Numerical investigation on activation energy of chemically reactive heat transfer unsteady flow with multiple slips

2020 ◽  
Vol 30 (11) ◽  
pp. 4955-4977
Author(s):  
Aaqib Majeed ◽  
Noorul Amin ◽  
A. Zeeshan ◽  
R. Ellahi ◽  
Sadiq M. Sait ◽  
...  

Purpose The purpose of this study is to examine the impact of activation energy with binary chemical reaction for unsteady flow on permeable stretching surface. Design/methodology/approach The simultaneous effects of multiple slip and magneto-hydrodynamic effects at the boundary are taken into account. The thermal buoyancy parameter and thermal radiation are included in both energy and momentum equations, while expression of activation energy is considered in concentration equation. Three-stage Lobatto IIIa finite difference collocation technique with bvp4c MATLAB package is used to obtained numerical results. Findings The influence of key elements (Schmidt number, buoyancy force ratio factor, factor of radiation, magnetic element, unsteadiness factor, suction/injection parameter, Prandtl number, activation energy, chemical reaction rate parameter, heat source and sink parameters, velocity, thermal and concentration slips, porosity parameter and temperature difference parameter) on velocity, temperature and concentration profiles are illustrated pictorially. A detailed discussion is presented to see how the graphical aspects justify the physical prospect. Originality/value In the best of author’s knowledge, this work is yet not available in existing literature.

2019 ◽  
Vol 15 (1) ◽  
pp. 227-245 ◽  
Author(s):  
Gireesha B.J. ◽  
M. Archana ◽  
B. Mahanthesh ◽  
Prasannakumara B.C.

PurposeThe purpose of this paper is to explore the effects of binary chemical reaction and activation energy on nano Casson liquid flow past a stretched plate with non-linear radiative heat, and also, the effect of a novel exponential space-dependent heat source (ESHS) aspect along with thermal-dependent heat source (THS) effect in the analysis of heat transfer in nanofluid. Comparative analysis is carried out between the flows with linear radiative heat process and non-linear radiative heat process.Design/methodology/approachA similarity transformation technique is utilised to access the ODEs from the governed PDEs. The manipulation of subsequent non-linear equations is carried out by a well-known numerical approach called Runge–Kutta–Fehlberg scheme. Obtained solutions are briefly discussed with the help of graphical and tabular illustrations.FindingsThe effects of various physical parameters on temperature, nanoparticles volume fraction and velocity fields within the boundary layer are discussed for two different flow situations, namely, flow with linear radiative heat and flow with non-linear radiative heat. It is found that an irregular heat source/sink (ESHS and THS) and non-linear solar radiation play a vital role in the enhancement of the temperature distributions.Originality/valueThe problem is relatively original to study the effects of activation energy and binary chemical reaction along with a novel exponential space-based heat source on laminar boundary flow past a stretched plate in the presence of non-linear Rosseland radiative heat.


2020 ◽  
Vol 16 (6) ◽  
pp. 1669-1689 ◽  
Author(s):  
M. Gnaneswara Reddy ◽  
P. Vijayakumari ◽  
L. Krishna ◽  
K. Ganesh Kumar ◽  
B.C Prasannakumara

PurposeIn this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear thermal radiation and convective conditions.Design/methodology/approachInfinite shear rate viscosity impacts are invoiced in the modeling. The heat and mass transport characteristics are explored by employing the effects of a magnetic field, thermal nonlinear radiation and buoyancy effects. Rudimentary governing partial differential equations (PDEs) are represented and are transformed into ordinary differential equations by the use of similarity transformation. The nonlinear ordinary differential equations (ODEs), along with the boundary conditions, are resolved with the aid of a Runge-Kutta-Fehlberg scheme (RKFS) based on the shooting technique.FindingsThe impact of sundry parameters like the viscosity ratio parameter (β*), nonlinear convection parameters due to temperature and concentration (βT, βC), mixed convection parameter (α), Hartmann number (M2), Weissenberg number (We), nonlinear radiation parameter (NR), and the Prandtl number (Pr) on the velocity, temperature and the concentration distributions are examined. Furthermore, the impacts of important variables on the skin friction, Nusselt number and the Sherwood number have been scrutinized through tables and graphical plots.Originality/valueThe velocity distribution is suppressed by greater values of the Hartmann number. The velocity components in the tangential and axial directions of the fluid are raised with the viscosity ratio parameter and the tangential slip parameter, but these components are reduced with concentration to thermal buoyancy forces ratio and stretching sheet ratio.


2019 ◽  
Vol 15 (4) ◽  
pp. 758-778 ◽  
Author(s):  
B. Mahanthesh ◽  
Amala S. ◽  
Gireesha B.J. ◽  
I.L. Animasaun

Purpose The study of novel exponential heat source (EHS) phenomena across a flowing fluid with the suspension of nanoparticles over a rotating plate in the presence of Hall current and chemical reaction has been an open question. Therefore, the purpose of this paper is to investigate the impact of EHS in the transport of nanofluid under the influence of strong magnetic dipole (Hall effect), chemical reaction and temperature-dependent heat source (THS) effects. The Khanafer-Vafai-Lightstone model is used for nanofluid and the thermophysical properties of nanofluid are calculated from mixture theory and phenomenological laws. The simulation of the flow is also carried out using the appropriate values of the empirical shape factor for five different particle shapes (i.e. sphere, hexahedron, tetrahedron, column and lamina). Design/methodology/approach Using Laplace transform technique, exact solutions are presented for the governing nonlinear equations. Graphical illustrations are pointed out to represent the impact of involved parameters in a comprehensive way. The numeric data of the density, thermal conductivity, dynamic viscosity, specific heat, Prandtl number and Nusselt number for 20 different nanofluids are presented. Findings It is established that the nanofluid enhances the heat transfer rate of the working fluids; the nanoparticles also cause an increase of viscous. The impact of EHS advances the heat transfer characteristics significantly than usual thermal-based heat source (THS). Originality/value The effectiveness of EHS phenomena in the dynamics of nanofluid over a rotating plate with Hall current, chemical reaction and THS effects is first time investigated.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1048
Author(s):  
Syed Muhammad Ali Haider ◽  
Bagh Ali ◽  
Qiuwang Wang ◽  
Cunlu Zhao

In this paper, a mathematical model is established to examine the impacts of Stefan blowing on the unsteady magnetohydrodynamic (MHD) flow of an electrically conducting nanofluid over a stretching sheet in the existence of thermal radiation, Arrhenius activation energy and chemical reaction. It is proposed to use the Buongiorno nanofluid model to synchronize the effects of magnetic and electric fields on the velocity and temperature fields to enhance the thermal conductivity. We utilized suitable transformation to simplify the governing partial differential equation (PDEs) into a set of nonlinear ordinary differential equations (ODEs). The obtained equations were solved numerically with the help of the Runge–Kutta 4th order using the shooting technique in a MATLAB environment. The impact of the developing flow parameters on the flow characteristics is analyzed appropriately through graphs and tables. The velocity, temperature, and nanoparticle concentration profiles decrease for various values of involved parameters, such as hydrodynamic slip, thermal slip and solutal slip. The nanoparticle concentration profile declines in the manifestation of the chemical reaction rate, whereas a reverse demeanor is noted for the activation energy. The validation was conducted using earlier works published in the literature, and the results were found to be incredibly consistent.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose The analysis of boundary layers is needed to reflect the behaviour of fluid flows in current industrial processes and to improve the efficacy of products. Hence, this study aims to analyse the flow and heat transfer performance of hybrid alumina-copper/water (Al2O3-Cu/H2O) nanofluid with the inclusion of activation energy and binary chemical reaction effect towards a moving wedge. Design/methodology/approach The multivariable differential equations with partial derivatives are converted into a specific type of ordinary differential equations by using valid similarity transformations. The reduced mathematical model is elucidated in the MATLAB system by using the bvp4c procedure. This solution method is competent in delivering multiple solutions once appropriate assumptions are supplied. Findings The results of multiple control parameters have been studied, and the findings are verified to provide more than one solution. The coefficient of skin friction was discovered to be increased by adding nanoparticles volume fraction from 0% to 0.5% and 1%, by almost 1.6% and 3.2%. Besides, increasing the nanoparticles volume fraction improves heat transfer efficiency gradually. The inclusion of the activation energy factor displays a downward trend in the mass transfer rates, consequently reducing the concentration profile. In contrast, the increment of the binary reaction rate greatly facilitates the augmentation of mass transfer rates. There is a significant enhancement in the heat transfer rate, approximately 13.2%, when the suction effect dominates about 10% in the boundary layer flow. Additionally, the results revealed that as the activation energy rises, the temperature and concentration profiles rise as well. It is proved that the activation energy parameter boosts the concentration of chemical species in the boundary layer. A similar pattern emerges as the wedge angle parameter increases. The current effort aims to improve the thermal analysis process, particularly in real-world applications such as geothermal reservoirs, chemical engineering and food processing, which often encountered mass transfer phenomenon followed by chemical reactions with activation energy. Originality/value The present results are original and new for the study of flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction.


2019 ◽  
Vol 16 (1) ◽  
pp. 169-190
Author(s):  
C. RamReddy ◽  
P. Naveen

Purpose The purpose of this paper is to analyze the combined effects of thermal radiation and activation energy with a chemical reaction on the quadratic convective flow of a micropolar fluid over an inclined plate. Convective thermal boundary condition and suction/injection effects are considered at the surface of an inclined plate. Design/methodology/approach The convection along with nonlinear Boussinesq approximation (i.e. quadratic convection or nonlinear convection) and usual boundary layer assumptions is employed in the mathematical formulation. Highly coupled nonlinear governing equations are tackled by a combined local non-similarity and successive linearization techniques. Findings The behavior of various pertinent parameters on the fluid flow characteristics is conferred through graphs and it reveals that the qualitative behaviors of velocity, temperature, skin friction and heat transfer rates of a micropolar fluid are similar for Biot number and radiation parameters. The suction/injection and activation energy parameters increase the concentration of the micropolar fluid within the boundary layer, while the chemical reaction parameter reduces the concentration in the same region. Further, this quadratic convection shows a strong influence on the fluid flow characteristics and then the impact of pertinent parameters is more prominent on the physical quantities, compared therewith results of the linear convection. Practical implications This kind of investigation is useful in the mechanism of combustion, aerosol technology, high-temperature polymeric mixtures and solar collectors which are operated at moderate to very high temperatures. Originality/value This attempt is a unique contribution to the establishment of both micropolar fluid and activation energy. This kind of study even in the absence of quadratic convection is not yet noted.


2020 ◽  
Vol 16 (5) ◽  
pp. 1277-1293 ◽  
Author(s):  
B. Mahanthesh

PurposeThe magnetohydrodynamic (MHD) flow problems are important in the field of biomedical applications such as magnetic resonance imaging, inductive heat treatment of tumours, MHD-derived biomedical sensors, micropumps for drug delivery, MHD micromixers, magnetorelaxometry and actuators. Therefore, there is the impact of the magnetic field on the transport of non-Newtonian Carreau fluid in the presence of binary chemical reaction and activation energy over an extendable surface having a variable thickness. The significance of irregular heat source/sink and cross-diffusion effects is also explored.Design/methodology/approachThe leading governing equations are constructed by retaining the effects of binary chemical reaction and activation energy. Suitable similarity transformations are used to transform the governing partial differential equations into ordinary differential equations. Subsequent nonlinear two-point boundary value problem is treated numerically by using the shooting method based on Runge–Kutta–Fehlberg. Graphical results are presented to analyze the behaviour of effective parameters involved in the problem. The numerical values of the mass transfer rate (Sherwood number) and heat transfer rate (Nusselt number) are also calculated. Furthermore, the slope of the linear regression line through the data points is determined in order to quantify the outcome.FindingsIt is established that the external magnetic field restricts the flow strongly and serves as a potential control mechanism. It can be concluded that an applied magnetic field will play a major role in applications like micropumps, actuators and biomedical sensors. The heat transfer rate is enhanced due to Arrhenius activation energy mechanism. The boundary layer thickness is suppressed by strengthening the thickness of the sheet, resulting in higher values of Nusselt and Sherwood numbers.Originality/valueThe effects of magnetic field, binary chemical reaction and activation energy on heat and mass transfer of non-Newtonian Carreau liquid over an extendable surface with variable thickness are investigated for the first time.


Author(s):  
Sadia Rashid ◽  
Tasawar Hayat ◽  
Sumaira Qayyum ◽  
Muhammad Ayub ◽  
Ahmed Alsaedi

Purpose The purpose of this study is to study flow caused by rotating frame. Effects of Darcy–Forchheimer and porous medium are considered to study velocity field. Concentration field is discussed in presence of activation energy. Darcy–Forchheimer in a rotating frame is examined. Flow because of stretched sheet fills the porous space. Binary chemical reaction is entertained. Resulting system is numerically solved. The plots are arranged for rotational parameter, porosity parameter, coefficients of inertia, Prandtl number and Schmidt number. It is revealed that rotation on velocity has opposite effects when compared with temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are numerically discussed. Design/methodology/approach Darcy–Forchheimer in a rotating frame is examined. Flow because of stretched sheet fills the porous space. Binary chemical reaction is entertained. Resulting system is numerically solved. The plots are arranged for rotational parameter, porosity parameter, coefficients of inertia, Prandtl number and Schmidt number. It is revealed that rotation on velocity has opposite effects when compared with temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are numerically discussed. Findings The major findings here are as follows: an addition in porosity λ causes decay in velocity f′(η) while there is opposite behavior for temperature θ(η) and concentration ϕ(η) fields. θ and ϕ via β have similar results qualitatively. There is an opposite behavior of Pr on temperature and concentration. Inverse behavior of λ on ϕ and wall mass flux is noted. Concentration ϕ is decreasing function of reaction rate constant σ. Skin friction coefficient has similar qualitative results for λ and β. Temperature gradient −θ′(0) is decreased by λ and β. Originality/value Here, the authors are interested to investigate rotating flow in a porous space. Dissipation and radiation effects are neglected. Effects of activation energy are studied. This work is not done yet in literature.


2018 ◽  
Vol 15 (6) ◽  
pp. 731-742 ◽  
Author(s):  
Aurang Zaib ◽  
Rizwan Ul Haq ◽  
A.J. Chamkha ◽  
M.M. Rashidi

PurposeThe study aims to numerically examine the impact of nanoparticles on an unsteady flow of a Williamson fluid past a permeable convectively heated shrinking sheet.Design/methodology/approachIn sort of the solution of the governing differential equations, suitable transformation variables are used to get the system of ODEs. The converted equations are then numerically solved via the shooting technique.FindingsThe impacts of such parameters on the velocity profile, temperature distribution and the concentration of nanoparticles are examined through graphs and tables. The results point out that multiple solutions are achieved for certain values of the suction parameter and for decelerating flow, while for accelerating flow, the solution is unique. Further, the non-Newtonian parameter reduces the fluid velocity and boosts the temperature distribution and concentration of nanoparticles in the first solution, while the reverse drift is noticed in the second solution.Practical implicationsThe current results may be used in many applications such as biomedicine, industrial, electronics and solar energy.Originality/valueThe authors think that the current results are new and significant, which are used in many applications such as biomedicine, industrial, electronics and solar energy. The results have not been considered elsewhere.


Author(s):  
Emmanuel Olurotimi Titiloye ◽  
Adeshina Taofeeq Adeosun ◽  
Jacob Abiodun Gbadeyan

This article investigates the combined effect of second-order velocity slip, Arrhenius activation energy and binary chemical reaction on reactive Casson nanofluid flow in a non-Darcian porous medium. The governing equations of the problem were first non-dimensionalized and later reduced to ordinary nonlinear differential equations by adopting a similarity transformation. The emerging nonlinear boundary value problem was solved by using Galerkin weighted residual method (GWRM). The obtained results were compared with those found in the literature to validate our method. The impact of pertinent parameters on the velocity component, temperature distribution and concentration profile are presented using graphs and were discussed. The computational results show that an increase in second order slip parameter significantly results to an increase in the temperature as well as nanoparticle concentration profiles, while it reduces the velocity profile.


Sign in / Sign up

Export Citation Format

Share Document