Different firm responses to the COVID-19 pandemic shocks: machine-learning evidence on the Vietnamese labor market

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lam Hoang Viet Le ◽  
Toan Luu Duc Huynh ◽  
Bryan S. Weber ◽  
Bao Khac Quoc Nguyen

PurposeThis paper aims to identify the disproportionate impacts of the COVID-19 pandemic on labor markets.Design/methodology/approachThe authors conduct a large-scale survey on 16,000 firms from 82 industries in Ho Chi Minh City, Vietnam, and analyze the data set by using different machine-learning methods.FindingsFirst, job loss and reduction in state-owned enterprises have been significantly larger than in other types of organizations. Second, employees of foreign direct investment enterprises suffer a significantly lower labor income than those of other groups. Third, the adverse effects of the COVID-19 pandemic on the labor market are heterogeneous across industries and geographies. Finally, firms with high revenue in 2019 are more likely to adopt preventive measures, including the reduction of labor forces. The authors also find a significant correlation between firms' revenue and labor reduction as traditional econometrics and machine-learning techniques suggest.Originality/valueThis study has two main policy implications. First, although government support through taxes has been provided, the authors highlight evidence that there may be some additional benefit from targeting firms that have characteristics associated with layoffs or other negative labor responses. Second, the authors provide information that shows which firm characteristics are associated with particular labor market responses such as layoffs, which may help target stimulus packages. Although the COVID-19 pandemic affects most industries and occupations, heterogeneous firm responses suggest that there could be several varieties of targeted policies-targeting firms that are likely to reduce labor forces or firms likely to face reduced revenue. In this paper, the authors outline several industries and firm characteristics which appear to more directly be reducing employee counts or having negative labor responses which may lead to more cost–effect stimulus.

2021 ◽  
Author(s):  
Shanmugha Sundaram G A ◽  
Harun Surej I ◽  
Karthic S ◽  
Gandhiraj R ◽  
Binoy B N ◽  
...  

In complex application wherein the signal propagating through free space is subject to multipath interference due to scatter by line-of-sight and non-line-of-sight objects in the propagation channel. The aims is to identify scatter centers in the propagation channel and characterize them based on their subjective characteristics, interpreted based on machine learning algorithm operations. Data-driven models are employed, replacing the traditional analytical approaches, in order to profile the scatter centers as either of absorbing or reflecting types based on the manner in which the signals are affected. A typical multistatic detection scenario is reconstructed under controlled laboratory conditions in order to create spatially independent data sets, while operating in the C-band frequency. The outcomes of this study are then applied to identify the scatter centers based on the distinct signatures they register in the experimental data set. As a converse argument, the process of antenna pattern estimation can now be performed free of an anechoic chamber setup, which is time and cost insensitive. A greater relevance shall be in the context of mid-band 5G-NR cellular communication systems that need to optimize the distributed antenna location attributes on time and cost constrained scales before attempting a large-scale deployment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Apostolos Ampountolas ◽  
Mark P. Legg

Purpose This study aims to predict hotel demand through text analysis by investigating keyword series to increase demand predictions’ precision. To do so, this paper presents a framework for modeling hotel demand that incorporates machine learning techniques. Design/methodology/approach The empirical forecasting is conducted by introducing a segmented machine learning approach of leveraging hierarchical clustering tied to machine learning and deep learning techniques. These features allow the model to yield more precise estimates. This study evaluates an extensive range of social media–derived words with the most significant probability of gradually establishing an understanding of an optimal outcome. Analyzes were performed on a major hotel chain in an urban market setting within the USA. Findings The findings indicate that while traditional methods, being the naïve approach and ARIMA models, struggled with forecasting accuracy, segmented boosting methods (XGBoost) leveraging social media predict hotel occupancy with greater precision for all examined time horizons. Additionally, the segmented learning approach improved the forecasts’ stability and robustness while mitigating common overfitting issues within a highly dimensional data set. Research limitations/implications Incorporating social media into a segmented learning framework can augment the current generation of forecasting methods’ accuracy. Moreover, the segmented learning approach mitigates the negative effects of market shifts (e.g. COVID-19) that can reduce in-production forecasts’ life-cycles. The ability to be more robust to market deviations will allow hospitality firms to minimize development time. Originality/value The results are expected to generate insights by providing revenue managers with an instrument for predicting demand.


2017 ◽  
Vol 29 (9) ◽  
pp. 2240-2260 ◽  
Author(s):  
Karen Xie ◽  
Zhenxing Mao

Purpose With the prevalence of the sharing economy phenomenon, there are an increasing number of hosts on Airbnb who manage more than one listing. Managing more listings likely makes hosts more seasoned in terms of serving guests, but it may undermine host quality due to hosts’ constrained capability. This paper aims to examine the effects of host quality attributes and the number of listings per host on the reservation performance of these listings. Design/methodology/approach Using a large-scale but granular data set of 5,805 active listings of 4,608 Airbnb hosts in Austin, Texas, this study estimates the effects of host attributes (host quality and listing quantity) on the performance of the hosts’ Airbnb listings through a blend of regression models. Findings This study evidences that host quality attributes significantly influence listing performance through cue-based trust. In addition, this study finds a “trade-off” between host quality and the quantity of their listings. As the number of listings managed by a host increases, the performance effects of host quality diminish. Research limitations/implications The business implications of this study include the suggestion that sharing economy businesses such as Airbnb should sustain service quality through incentivizing hosts to improve host quality while balancing the quantity of listings managed. Originality/value This study contributes to the literature through its meaningful theoretical extension in the sharing economy context and unique data-driven insights enabled by an analytical approach. It addresses the critical but less researched topic of host quality and listing quantity and generates important practical business and policy implications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seungpeel Lee ◽  
Honggeun Ji ◽  
Jina Kim ◽  
Eunil Park

Purpose With the rapid increase in internet use, most people tend to purchase books through online stores. Several such stores also provide book recommendations for buyer convenience, and both collaborative and content-based filtering approaches have been widely used for building these recommendation systems. However, both approaches have significant limitations, including cold start and data sparsity. To overcome these limitations, this study aims to investigate whether user satisfaction can be predicted based on easily accessible book descriptions. Design/methodology/approach The authors collected a large-scale Kindle Books data set containing book descriptions and ratings, and calculated whether a specific book will receive a high rating. For this purpose, several feature representation methods (bag-of-words, term frequency–inverse document frequency [TF-IDF] and Word2vec) and machine learning classifiers (logistic regression, random forest, naive Bayes and support vector machine) were used. Findings The used classifiers show substantial accuracy in predicting reader satisfaction. Among them, the random forest classifier combined with the TF-IDF feature representation method exhibited the highest accuracy at 96.09%. Originality/value This study revealed that user satisfaction can be predicted based on book descriptions and shed light on the limitations of existing recommendation systems. Further, both practical and theoretical implications have been discussed.


2019 ◽  
Vol 37 (6) ◽  
pp. 952-969
Author(s):  
Ahsan Mahmood ◽  
Hikmat Ullah Khan

Purpose The purpose of this paper is to apply state-of-the-art machine learning techniques for assessing the quality of the restaurants using restaurant inspection data. The machine learning techniques are applied to solve the real-world problems in all sphere of life. Health and food departments pay regular visits to restaurants for inspection and mark the condition of the restaurant on the basis of the inspection. These inspections consider many factors that determine the condition of the restaurants and make it possible for the authorities to classify the restaurants. Design/methodology/approach In this paper, standard machine learning techniques, support vector machines, naïve Bayes and random forest classifiers are applied to classify the critical level of the restaurants on the basis of features identified during the inspection. The importance of different factors of inspection is determined by using feature selection through the help of the minimum-redundancy-maximum-relevance and linear vector quantization feature importance methods. Findings The experiments are accomplished on the real-world New York City restaurant inspection data set that contains diverse inspection features. The results show that the nonlinear support vector machine achieves better accuracy than other techniques. Moreover, this research study investigates the importance of different factors of restaurant inspection and finds that inspection score and grade are significant features. The performance of the classifiers is measured by using the standard performance evaluation measures of accuracy, sensitivity and specificity. Originality/value This research uses a real-world data set of restaurant inspection that has, to the best of the authors’ knowledge, never been used previously by researchers. The findings are helpful in identifying the best restaurants and help finding the factors that are considered important in restaurant inspection. The results are also important in identifying possible biases in restaurant inspections by the authorities.


2021 ◽  
Author(s):  
Shanmugha Sundaram G A ◽  
Harun Surej I ◽  
Karthic S ◽  
Gandhiraj R ◽  
Binoy B N ◽  
...  

In complex application wherein the signal propagating through free space is subject to multipath interference due to scatter by line-of-sight and non-line-of-sight objects in the propagation channel. The aims is to identify scatter centers in the propagation channel and characterize them based on their subjective characteristics, interpreted based on machine learning algorithm operations. Data-driven models are employed, replacing the traditional analytical approaches, in order to profile the scatter centers as either of absorbing or reflecting types based on the manner in which the signals are affected. A typical multistatic detection scenario is reconstructed under controlled laboratory conditions in order to create spatially independent data sets, while operating in the C-band frequency. The outcomes of this study are then applied to identify the scatter centers based on the distinct signatures they register in the experimental data set. As a converse argument, the process of antenna pattern estimation can now be performed free of an anechoic chamber setup, which is time and cost insensitive. A greater relevance shall be in the context of mid-band 5G-NR cellular communication systems that need to optimize the distributed antenna location attributes on time and cost constrained scales before attempting a large-scale deployment.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2020 ◽  
Vol 47 (3) ◽  
pp. 547-560 ◽  
Author(s):  
Darush Yazdanfar ◽  
Peter Öhman

PurposeThe purpose of this study is to empirically investigate determinants of financial distress among small and medium-sized enterprises (SMEs) during the global financial crisis and post-crisis periods.Design/methodology/approachSeveral statistical methods, including multiple binary logistic regression, were used to analyse a longitudinal cross-sectional panel data set of 3,865 Swedish SMEs operating in five industries over the 2008–2015 period.FindingsThe results suggest that financial distress is influenced by macroeconomic conditions (i.e. the global financial crisis) and, in particular, by various firm-specific characteristics (i.e. performance, financial leverage and financial distress in previous year). However, firm size and industry affiliation have no significant relationship with financial distress.Research limitationsDue to data availability, this study is limited to a sample of Swedish SMEs in five industries covering eight years. Further research could examine the generalizability of these findings by investigating other firms operating in other industries and other countries.Originality/valueThis study is the first to examine determinants of financial distress among SMEs operating in Sweden using data from a large-scale longitudinal cross-sectional database.


2019 ◽  
Vol 78 (5) ◽  
pp. 617-628 ◽  
Author(s):  
Erika Van Nieuwenhove ◽  
Vasiliki Lagou ◽  
Lien Van Eyck ◽  
James Dooley ◽  
Ulrich Bodenhofer ◽  
...  

ObjectivesJuvenile idiopathic arthritis (JIA) is the most common class of childhood rheumatic diseases, with distinct disease subsets that may have diverging pathophysiological origins. Both adaptive and innate immune processes have been proposed as primary drivers, which may account for the observed clinical heterogeneity, but few high-depth studies have been performed.MethodsHere we profiled the adaptive immune system of 85 patients with JIA and 43 age-matched controls with indepth flow cytometry and machine learning approaches.ResultsImmune profiling identified immunological changes in patients with JIA. This immune signature was shared across a broad spectrum of childhood inflammatory diseases. The immune signature was identified in clinically distinct subsets of JIA, but was accentuated in patients with systemic JIA and those patients with active disease. Despite the extensive overlap in the immunological spectrum exhibited by healthy children and patients with JIA, machine learning analysis of the data set proved capable of discriminating patients with JIA from healthy controls with ~90% accuracy.ConclusionsThese results pave the way for large-scale immune phenotyping longitudinal studies of JIA. The ability to discriminate between patients with JIA and healthy individuals provides proof of principle for the use of machine learning to identify immune signatures that are predictive to treatment response group.


2015 ◽  
Vol 22 (5) ◽  
pp. 573-590 ◽  
Author(s):  
Mojtaba Maghrebi ◽  
Claude Sammut ◽  
S. Travis Waller

Purpose – The purpose of this paper is to study the implementation of machine learning (ML) techniques in order to automatically measure the feasibility of performing ready mixed concrete (RMC) dispatching jobs. Design/methodology/approach – Six ML techniques were selected and tested on data that was extracted from a developed simulation model and answered by a human expert. Findings – The results show that the performance of most of selected algorithms were the same and achieved an accuracy of around 80 per cent in terms of accuracy for the examined cases. Practical implications – This approach can be applied in practice to match experts’ decisions. Originality/value – In this paper the feasibility of handling complex concrete delivery problems by ML techniques is studied. Currently, most of the concrete mixing process is done by machines. However, RMC dispatching still relies on human resources to complete many tasks. In this paper the authors are addressing to reconstruct experts’ decisions as only practical solution.


Sign in / Sign up

Export Citation Format

Share Document