Investigation of the precision loss for ball screw raceway based on the modified Archard theory

2017 ◽  
Vol 69 (2) ◽  
pp. 166-173 ◽  
Author(s):  
Chang-Guang Zhou ◽  
Yi Ou ◽  
Hu-Tian Feng ◽  
Zeng-Tao Chen

Purpose This paper aims to examine the precision loss of ball screw raceway under different operating conditions and geometry parameters. Design/methodology/approach Based on a new coefficient K’ introduced especially for ball screws to reflect the actual contact condition, the modified Archard theory is applied to ball screws to obtain wear volume of the ball-screw contacts. Thus, the axial precision loss can be defined as the ratio of the wear volume to the contact area. Meanwhile, a novel running bench and a precision-measuring system of ball screws are conducted. Precision variation is obtained and analyzed during the whole life running test, which agrees well with the theoretical values calculated in this paper. Findings For a given rotational speed, the increasing rate of the precision loss rate is high at low axial load and then becomes small with the increasing axial load, whereas for a given axial load, the precision loss rate is proportional to the rotational speed. Besides, the precision loss rate is reduced with the increasing contact angle between a ball and the screw raceway, and is proportional to the helix angle when the angle changes from 1 to 10 degrees. Research limitations/implications The rotational speed used in this experiment is low and the ball screw is of no-load type, although results calculated by the model and Wei’s model seem close when the axial load is high, whether the model built in the paper is applicable to the condition of high rotational speed and preload still needs to be verified in the future work. Practical implications This study provides an accurate model to predict the precision loss of the screw raceway and estimate the remaining life of ball screws, which is significant for better performance of ball screws as well as the computer numerical control machine tools. Originality/value Previous studies on the wear of ball screws mainly focused on the drag torque analysis and mechanical efficiency estimation, and the experiment to verify their theoretical analysis was almost all limited to the test of drag torque or axial rigidity, which is neither sufficient nor persuasive. However, in this paper, the authors proposed a comprehensive wear prediction model which combines the modified Archard wear theory, Hertz contact theory and kinematic theory of ball screws. To the best of the authors’ knowledge, this kind of study has never been reported in the literature. In addition, for the lack of the test bench and high cost of the experiment, the whole life operation test, which is designed and conducted to confirm the model in this paper, has never been reported in literature either.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Min-Chi Chang ◽  
Jeng Luen Liou ◽  
Chin-Chung Wei ◽  
Jeng-Haur Horng ◽  
Yueh-Ling Chiu ◽  
...  

In the present study, the vibrational and frictional torque signals acquired from the forward-backward movements of a commercial ball-screw system were considered via mono fractal analysis. The short-range tests were carried out in order to investigate the effects of operating conditions, a nut's inner surface roughness and the applied pretension (preload) on the fractal dimension (Ds) and topothesy (G). The long-range test was conducted to observe the variations of vibrational and frictional torque signals and thus the fractal parameters acquired from the ball-screw operations under the condition of no fresh grease supply during the testing process. The effects of the ball-screw rotational speed and pretension on the G parameter of vibrations were greater than the Ds parameter. In the backward movement, the highest G value always occurred at the highest rotational speed (3000 rpm in this study). The Ds parameter generated in the forward movement by the nut's inner surface before polishing produced a value greater than that by the nut with a polished surface. The G parameter related to vibrational amplitudes showed a value before polishing greater than that after polishing. The unusual vibrational signals are assumed to be related to ball passing behavior. Their experimental frequency was verified to be consistent with the frequency predicted by the ball pass theory. An increase in the rotational speed can bring a significant increase in the number of ball-pass signals. The G parameter and its skewness data, defined for the number distribution function of the G peaks, showed values that in general increased with the test time if the fresh grease was not supplied during the long-range test.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401880017 ◽  
Author(s):  
Chang-Guang Zhou ◽  
Hu-Tian Feng ◽  
Yi Ou

Based on the empirical equations for the friction torque of rolling bearings, this article proposes a new model for predicting the friction torque and mechanical efficiency of ball screws. Meanwhile, a novel measuring system is constructed to obtain the mechanical efficiency of ball screws, where both the axial load and rotational speed are stable and adjustable. The experimental results at a rotational speed of 1000 r/min agree well with the theoretical values calculated by the present method, which show that the mechanical efficiency of ball screws increases with increasing axial load. Moreover, the model built in this article is more applicable to a relatively high-speed condition. The new model can be easily used to obtain the friction torque and mechanical efficiency for ball screws, which is essential for improving the performance of ball screws and the computer numerical control machine tools.


2016 ◽  
Vol 22 (2) ◽  
pp. 350-357 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh ◽  
Harwinder Singh

Purpose In this study the friction and wear behavior of fused deposition modeling (FDM) parts fabricated with composite material and acrylonitrile butadiene styrene (ABS) material feedstock filament were realized and compared under dry sliding conditions. Design/methodology/approach The tests were performed by applying the load of 5, 10, 15 and 20 N with sliding velocity of 0.63 m/s for the duration of 5 and 10 min at room temperature. Findings The results highlight various wear mechanisms such as adhesion, abrasion and fatigue during the investigation. It was observed that the wear volume, friction force, friction co-efficient and temperature were sensitive to the applied load and time duration. The composite material showed a remarkable improvement in wear properties as compared to the ABS material. Research limitations/implications The investigations reported in the present research work is based on comparative analysis (of composite material and ABS material feedstock filament). The results may be different in practical applications because of different operating conditions. Practical implications The parts fabricated with proposed composite material feedstock filament are highly wear resistant than basic ABS filament. This may lead to the development of better wear resistance components for numerous field applications. Originality/value The potential of this research work is to fabricate FDM parts with composite material feedstock filament to cater need of wear resistant industrial components.


Author(s):  
Zain Dweik ◽  
Roger Briley ◽  
Timothy Swafford ◽  
Barry Hunt

Buoyancy driven flows such as the one that occurs in the inter-disk space of an axial compressor spool plays a major role in determining the gas turbine engine projected life and performance. Details of the developed flow structure inside these spaces largely impact the operating temperatures on the rotating walls of the compressor hardware and therefore impact the life of the machine. In this paper the impact of engine power condition (Idle, Highpower, and Shutdown) on the flow structure for these rotating cavities is studied under a wide range of operating conditions encountered by realistic turbomachines. A computational analysis is performed using commercially available computational tools for grid generation (ICEM-CFD) and turbulent-flow simulation (CFX). A computational test case was developed to imitate the rig-test conditions of Owen and Powell, and computed results were assessed and validated by comparison with their experimental results. A total of fifteen unsteady CFD cases covering a wide range of operating conditions (Rossby Number Ro, Rotational Rayleigh Number Raφ, and axial Reynolds Number Rez) were analyzed. The computed flow results revealed that the flow structure evolution, starting from a steady state solution, is such that radial arms of different number (according to the engine power condition), surrounded by a co-rotating (cyclonic) and counter-rotating (anti-cyclonic) pair of vortices, start to form at different locations. Cold air from the central jet enters the cavity in these arms under the combined action of the centrifugal buoyancy and the Coriolis forces. As time proceeds, the flow structure tends to become virtually invariant with time in a repeatable pattern. The number of radial arms, strength of recirculation zones, and the degree of invasion of the central cooling air toward the shroud are all dependent on the engine power condition. The computations also revealed that at high rotational speed the flow stabilizes, and the unsteady features of the flow structure (cyclonic and anti-cyclonic recirculation zones surrounding the radial arms, radial invasion of the cooling air in the radial arms, and its final impingement upon the shroud surface) eventually disappear after a threshold value of the rotational speed is reached.


2018 ◽  
Vol 70 (7) ◽  
pp. 1268-1281 ◽  
Author(s):  
Peng-hui Wu ◽  
Xiaojun Zhou ◽  
Chenlong Yang ◽  
Haoliang Lv ◽  
Tianhao Lin ◽  
...  

Purpose The purpose of this paper is to reduce the drag loss and study the effects of operating conditions and groove parameters such as flow rate and temperature of automatic transmission fluid, clearance between plates, groove depth and groove ratio on the drag torque of a wet clutch for vehicles, parametric analysis of the drag torque model of wet multi-plate friction clutch with groove consideration. Design/methodology/approach Both experimental and numerical research was carried out in this work. Parametric groove models, full film lubrication flow model and pressure distribution model are established to investigate the effects of the grooves on drag torque of a wet clutch. Multigrid method is used to simplify the solution. Findings In this paper, a drag torque model of a wet multi-plate friction clutch based on the basic theory of viscous fluid dynamics is examined through experimental and numerical methods that take grooves into account, and the change trend of drag torque with operating conditions and groove parameters is analyzed. Originality/value Multigrid method is used to solve the governing equations, which simplifies the solution process because of the restrictions and interpolation operations between the adjacent layers of coarser and fine grids. These works provide insight into the effect regularity of operating conditions and groove parameters on drag torque of a wet multi-plate friction clutch. Furthermore, variable test conditions and sufficient experimental data are the main functions in the experimental research.


2021 ◽  
Vol 13 (14) ◽  
pp. 7998
Author(s):  
Maxime Binama ◽  
Kan Kan ◽  
Hui-Xiang Chen ◽  
Yuan Zheng ◽  
Daqing Zhou ◽  
...  

The utilization of pump as turbines (PATs) within water distribution systems for energy regulation and hydroelectricity generation purposes has increasingly attracted the energy field players’ attention. However, its power production efficiency still faces difficulties due to PAT’s lack of flow control ability in such dynamic systems. This has eventually led to the introduction of the so-called “variable operating strategy” or VOS, where the impeller rotational speed may be controlled to satisfy the system-required flow conditions. Taking from these grounds, this study numerically investigates PAT eventual flow structures formation mechanism, especially when subjected to varying impeller rotational speed. CFD-backed numerical simulations were conducted on PAT flow under four operating conditions (1.00 QBEP, 0.82 QBEP, 0.74 QBEP, and 0.55 QBEP), considering five impeller rotational speeds (110 rpm, 130 rpm, 150 rpm, 170 rpm, and 190 rpm). Study results have shown that both PAT’s flow and pressure fields deteriorate with the machine influx decrease, where the impeller rotational speed increase is found to alleviate PAT pressure pulsation levels under high-flow operating conditions, while it worsens them under part-load conditions. This study’s results add value to a thorough understanding of PAT flow dynamics, which, in a long run, contributes to the solution of the so-far existent technical issues.


Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


CIRP Annals ◽  
2001 ◽  
Vol 50 (1) ◽  
pp. 281-284 ◽  
Author(s):  
T. Aoyama ◽  
I. Inasaki

2015 ◽  
Vol 642 ◽  
pp. 212-216
Author(s):  
Yi Haung ◽  
Chin Chung Wei

Ball screw is a high-precision and high performance linear drive of mechanical elements. The frictional heat of internal components what is very significant impact for platform transmission in high speed and the high axial load and causes the thermal expansion of element. In this research , the influence of different greases on ball screw is investigated in thermal rising of nut and driving torque in high speed and high axial load. A vertical motion platform was used for driving performance test. Thermal rising of nut of ball screw and the variance of transmission torque whose lubricated by high viscosity base oil grease is significant larger than the lower one. High viscosity grease is not easy to carry out the friction heat generated at ball and raceway contact area due to the bad flowing properties. It also has more serious wear occurred at contact area and high friction force, whose causes the large variance of transmission torque.


Sensor Review ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 78-81 ◽  
Author(s):  
Srdjan Jovic ◽  
Obrad Anicic ◽  
Milivoje Jovanovic

Purpose Acoustic emission (AE) could be used for prevention and detection of tool errors in Computer Numerical Control (CNC) machining. The purpose of this study is to analyze the AE form of CNC machining operations. Design/methodology/approach Experimental measurements were performed with three sensors on the CNC lathe to collect the data of the CNC machining. Adaptive neuro-fuzzy inference system (ANFIS) was applied for the fusion from the sensors’ signals to determine the strength of the signal periodic component among the sensors. Findings There were three inputs, namely, spindle speed, feed rate and depth of cut. ANFIS was also used to determine the inputs’ influence on the prediction of strength of the signal periodic component. Variable selection process was used to select the most dominant factors which affect the prediction of strength of the signal periodic component. Originality/value Results were shown that the spindle speed has the most dominant effect on the strength of the signal periodic component.


Sign in / Sign up

Export Citation Format

Share Document