Fracture properties of GGBS-dolomite geopolymer concrete

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saranya P. ◽  
Praveen Nagarajan ◽  
A.P. Shashikala

Purpose This study aims to predict the fracture properties of geopolymer concrete, which is necessary for studying failure behaviour of concrete. Design/methodology/approach Geopolymers are new alternative binders for cement in which polymerization gives strength to concrete rather than through hydration. Geopolymer concrete was developed from industrial byproducts such as GGBS and dolomite. Present study estimates the fracture energy of GGBS geopolymer concrete using three point bending test (RILEM TC50-FMC) with different percentages of dolomite and compare with cement concrete having same strength. Findings The fracture properties such as peak load, critical stress intensity factor, fracture energy and characteristic length are found to be higher for GGBS-dolomite geopolymer concrete, when their proportion becomes 70:30. Originality/value To the best of the authors’ knowledge, this is an original experimental work.

2019 ◽  
Vol 11 (6) ◽  
pp. 751-767
Author(s):  
Raja Rajeshwari B. ◽  
Sivakumar M.V.N.

Purpose Fracture properties depend on the type of material, method of testing and type of specimen. The purpose of this paper is to evaluate fracture properties by adopting a stable test method, i.e., wedge split test. Design/methodology/approach Coarse aggregate of three different sizes (20 mm, 16 mm and 12.5 mm), three ratios of coarse aggregate, fine aggregate (CA:FA) (50:50, 45:55, 40:60), presence of steel fibers, and specimens without and with guide notch were chosen as parameters of the study. Findings Load-crack mouth opening displacement curves indicate that for both fibrous and non-fibrous mixes, higher volume of aggregate and higher size of coarse aggregate have high fracture energy. Originality/value For all volumes of coarse aggregate, it was noticed that specimens with 12.5 mm aggregate size achieved highest peak load and abrupt drop post-peak. The decrease in coarseness of internal structure of concrete (λ) resulted in the increase of fracture energy.


2021 ◽  
Vol 60 (1) ◽  
pp. 418-437
Author(s):  
Peng Zhang ◽  
Xu Han ◽  
Yuanxun Zheng ◽  
Jinyi Wan ◽  
David Hui

Abstract The effects of polyvinyl alcohol (PVA) fiber content on mechanical and fracture properties of geopolymer concrete (GPC) were investigated in the present study. Mechanical properties include cubic compressive, prism compressive, tensile and flexural strengths, and elastic modulus. The evaluation indices in fracture properties were measured by using the three-point bending test. Geopolymer was prepared by fly ash, metakaolin, and alkali activator, which was obtained by mixing sodium hydroxide and sodium silicate solutions. The volume fractions of PVA fiber (length 12 mm and diameter 40 μm) were 0, 0.2, 0.4, 0.6, 0.8, and 1.0%. The results indicate that the effects of the PVA fiber on the cubic and prism compressive strengths and elastic modulus are similar. A tendency of first increasing and then decreasing with the increase in the PVA fiber content was observed in these properties. They all reached a maximum at 0.2% PVA fiber content. There was also a similar tendency of first increase and then decrease for tensile and flexural strengths, peak load, critical effective crack lengths, fracture toughness, and fracture energy of GPC, which were significantly improved by the PVA fiber. They reached a maximum at 0.8% PVA fiber content, except the tensile strength whose maximum was at 1.0% PVA fiber volume fraction. Considering the parameters analyzed, it seems that the 0.8% PVA fiber content provides optimal reinforcement of the mechanical properties of GPC.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2982 ◽  
Author(s):  
Yamin Wang ◽  
Shaowei Hu ◽  
Zhen He

In this paper, the mechanical and fracture properties of fly ash geopolymer concrete (FAGC) mixed with calcium aluminate cement (CAC) were explored. Fly ash was partially replaced by CAC with 2.5%, 5% and 7.5%. The results exhibit that the mechanical and fracture behaviors of FAGC are significantly influenced by CAC content. Based on the formation of more aluminum-rich gels, C-(A)-S-H and C-S-H gels, with the increase of CAC content, the compressive strength, splitting tensile strength and elastic modulus improved. Meanwhile, the peak load and effective fracture toughness show a monotone increasing trend. In addition, because C-S-H gels absorbed more energy, the fracture energy of FAGC increases. The maximal peak load, double-K fracture toughness and fracture energy reached up to1.79 kN, 4.27 MPam0.5, 10.1 MPam0.5 and 85.8 N/m with CAC content of 7.5%, respectively.


Holzforschung ◽  
2002 ◽  
Vol 56 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Alexander Reiterer ◽  
Gerhard Sinn

Summary The fracture properties of unmodified and modified (heat treatments under various conditions and acetylation) sprucewood are investigated using the wedge splitting test. Fracture parameters measured include critical stress intensity factor and specific fracture energy under Mode I loading and specific fracture energy under Mode III loading. The Mode I fracture properties are reduced by all kinds of modification. However, acetylation leads to a reduction of only 20%whereas heat treatments reduce the properties to a much greater extent, approximately 50%to 80%. The Mode III fracture properties are influenced less. SEM pictures of the fracture surfaces support the described findings.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Qifeng Guo ◽  
Xinghui Wu ◽  
Meifeng Cai ◽  
Shengjun Miao

To investigate the effects of offset notch on the fracture properties of rock beam under bending load, granite beam specimens with “one single offset notch” and “central and offset double notches” are made. A series of three-point bending beam tests on the specimens are carried out by controlling the displacement rate of central notch. The whole load-displacement (P-CMOD) curves are obtained. Experimental results show that the larger the distance between the offset notch and beam central is, the larger are the peak load and nominal strength of the specimen. The peak load and nominal strength for the “central and offset double notches” specimens are both larger than those for the “single central notch” specimen. A fracture model considering the effect of offset notch is developed, and the relationship between the offset notch parameter, tensile strength, and fracture toughness is established.


2011 ◽  
Vol 346 ◽  
pp. 40-46 ◽  
Author(s):  
Wai Ching Tang ◽  
Yiu Lo ◽  
Hong Zhi Cui

In this research, the mechanical and fracture behaviours of concrete containing waste CD shreds were investigated using the three-point bending notched beam test, according to RILEM recommendations. The size effect of waste CD shred on concrete properties was the focus of this research. The study indicates that the fracture energy and modified characteristic length were found to increase significantly with increasing the size and volume fraction of CD shreds due to anchoring and bridging effects. In other words, concrete with higher amounts and larger sizes of CD shreds exhibit higher cracking resistance and the brittleness decreases accordingly. However, the strength properties were found to decrease when concrete with larger portion and size of CD shreds.


2015 ◽  
Vol 108 ◽  
pp. 349-354 ◽  
Author(s):  
Marcin Kozłowski ◽  
Marta Kadela ◽  
Alfred Kukiełka

2015 ◽  
Vol 764-765 ◽  
pp. 1090-1094
Author(s):  
Tippabhotla D. Gunneswara Rao ◽  
P. Alfrite ◽  
G. Mallikarjuna Rao ◽  
Mudimby Andal

Geopolymer concrete (GPC) is a new construction material in which cement is totally replaced by calcined source materials fly ash and GGBS. Geopolymer utilization reduces or eliminates the use of cement whose production produces a lot of carbon dioxide. Usually fly ash as a source material for the geopolymer. The behavior of GPC has to be studied in detail to check its suitability in construction industry. In the present study, the fracture behavior of geopolymer concrete is investigated and compared. Three-point bending test on notched prisms with a/d (notch depth/beam depth) ratios 0.1, 0.15, 0.2 are considered. The values of Critical load, fracture toughness, fracture energy and ductility are presented. The test results of total of 27prisms, 6cubes, 18 cylinders with M30 grade geopolymer concrete and conventional concrete (OPC) of same grade are presented in this paper. The test results indicated that the characteristic length of GPC is about 25% more than that of conventional concrete.


2013 ◽  
Vol 353-356 ◽  
pp. 3615-3618 ◽  
Author(s):  
Cheng Fan ◽  
Xue Qing Jing

This paper is based on the basic principles of the extended finite element in the large commercial software ABAQUS on the platform of different fracture energy of three point bending test of concrete are numerically simulated, and three-point bending crack initiation, through expansion path analysis. The results show that has a direct impact on the size of the fracture energy of concrete specimens destruction, Fracture of brittle fracture can be small more obvious, produce more harmful. When softening decline stage after peak stress occurred in the "jump back" phenomenon.


Sign in / Sign up

Export Citation Format

Share Document