PBA-loaded albite-base ceramic foam in application to adsorb harmful ions of Cd, Cs and As(V) in water

2019 ◽  
Vol 15 (3) ◽  
pp. 659-672
Author(s):  
J.H. Chen ◽  
P.S. Liu ◽  
W. Cheng

Purpose The purpose of this paper is to provide an investigation on a new kind of adsorbent materials, namely, the Prussian blue analog (PBA)-loaded albite-base porous ceramic foam, which can effectively adsorb the heavy metal ion in the wastewater. Design/methodology/approach The natural zeolite powder has been used as the primary raw material to make a sort of porous ceramic foam by impregnating polymer foam in slurry and then sintering. Adjusting the technological parameters could control the bulk density of the ceramic product, which could float on water with the bulk density less than 1 g/cm3 and also sink in water with the bulk density higher than 1 g/cm3. After desilicating the porous ceramic foam, an Al-Fe type PBA with a strong function of ion exchange was loaded on the ceramic surface by directly yielding. Findings The adsorption performance for harmful metal ions was greatly improved by combining together the high adsorption capability of the PB analog and the efficient high specific surface area of the porous ceramic foam. Originality/value This work presents a PBA-loaded albite-base porous ceramic foam that can effectively adsorb the harmful substance in water, and the adsorption efficiency for some typical harmful ions, i.e., Cd2+, Cs+ and As(V), was examined under different conditions of the experimental period, the pH value and the ion concentration in the tested solution.

2019 ◽  
Vol 15 (6) ◽  
pp. 1366-1378
Author(s):  
Y.J. Guo ◽  
W. Cheng ◽  
P.S. Liu

Purpose The purpose of this paper is to provide an investigation on a new kind of photocatalytic material, namely, the porous ceramic foam loading titanium dioxide, which can make an effective photocatalytic degradation of the methyl orange (MO) solution in the wastewater. Design/methodology/approach The natural zeolite powder has been used as the primary raw material to produce a sort of lightweight porous ceramic foam by impregnating polymer foam in slurry and then sintering. With the sol-gel method, a kind of open-cell reticular porous ceramic foam loading TiO2 film was obtained having a good photocatalytic action, and the resultant porous composite product presents the bulk density of 0.3~0.6 g/cm3 to be able to float on water. Findings The MO could tend to be completely degraded in the solution with a certain concentration by the TiO2-loaded ceramic foam irradiated with ultraviolet light, and this composite foam was found to have high degradation efficiency for the MO solution in a wide range of pH. Originality/value This work presents a TiO2-loaded ceramic foam that can effectively photo-catalyze to degrade the MO in water, and the degradation efficiency were examined under different conditions of the MO solution with various pH values.


2016 ◽  
Vol 27 (1) ◽  
pp. 59-70
Author(s):  
Nirmala Gnanasundaram ◽  
Aruna Singh ◽  
M Ganesapillai

Purpose – The purpose of this paper is to harness the potential of microwave pre-treatment to prepare carbon from locally available Sterculia foetida fruit shells for adsorption of heavy metals, particularly Nickel ions (Ni++), from effluent. Design/methodology/approach – The pre-treatment methods comprise conventional methods as sun drying and oven drying as well as high intensity microwave drying. Response surface methodology was employed to analyse the optimization of the process. The adsorption behavioural characteristics of the material were established applying adsorption isotherms. Findings – Adsorption of Ni++ was found to be effective in microwave drying at output power of 300 W. It was observed that the maximum adsorption capacity was attained at pH 6; an adsorbent dosage of 0.25 mgml−1 and initial metal ion concentration of 20 ppm with an interactive effect of initial concentration and dosage. Originality/value – The research puts emphasise on prospecting of novel biomass for carbonization and application of the same for effective adsorption. Available literature on Sterculia foetida is very limited and this work will serve to create database on the amenability of processing.


2006 ◽  
Vol 3 (4) ◽  
pp. 218-229 ◽  
Author(s):  
R. Shanmugavalli ◽  
P. S. Syed Shabudeen ◽  
R. Venckatesh ◽  
K. Kadirvelu ◽  
S. Madhavakrishnan ◽  
...  

Activated carbon prepared from silk cotton hull (SCH) was used for the adsorptive removal of Pb(II) ion from aqueous solution. The raw material used for the preparation of activated carbon is the waste of agricultural product; the production of this carbon is expected to be economically feasible. Parameters such as agitation time, metal ion concentration, adsorbent dose,pH and Particle size were studied. Adsorption equilibrium was reached within 80 min for 10, 20, 30 and 40mg/l of Pb(II) ion with 50mg of carbon per mL of solution. Adsorption parameters were determined using both Langmuir and Freundlich isotherm models. The adsorption efficiency reached 100% for 20, 30 and 40mg/l of Pb(II) ion with 120, 140 and 150mg of carbon. Pb(II) ion removal increased as thepH increased from 2 to 5 and remains constant up topH 10. Desorption studies were also carried out with dilute hydrochloric acid to know the mechanism of adsorption. Quantitative desorption of Pb(II) ion from carbon indicates that adsorption of metal ion is by ion-exchange. Efficiency of the adsorption of SCH was also studied with Pb containing industrial wastewater by varyingpH and carbon concentration.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 239-242 ◽  
Author(s):  
R. Foroni ◽  
G. Gambraini ◽  
U. Danesi ◽  
M. Mauri ◽  
E. Pompilio ◽  
...  

✓ During the past two decades, the progress in computerized treatment planning systems has led to more accurate imaging and therapy by using the gamma knife, especially with the smallest collimators (4 mm). However, the ionization chambers that have been used to calibrate the gamma knife are not useful with the smallest collimators because the chambers are too big compared with the irradiated volume. Therefore, it is important to develop more suitable dosimeters. This study proposes a new dosimeter method. The FriXyGel method proposed here is based on a phantom dosimeter, an acquisition chain, and dedicated software. This dosimeter uses an agarose gel into which a ferrous sulphate solution (Fricke solution) and a metal ion indicator (xylenol orange) are incorporated. The absorbed dose is detected through measurements of visible light transmission, imaged by means of a charge-coupled device camera provided with a suitable optical filter. Gel layers are imaged before and after irradiation, and the differences in light absorption are related to the absorbed dose. By choosing convenient thickness of gel layers and by building up a phantom with different gel slices, it is possible to obtain a three-dimensional (3D) representation of the absorbed dose. The final 3D representation is reached after several mathematical processes have been applied to the images. The first step identifies and reduces all factors that could alter the original data, such as nonuniformity in illumination. Then, after calibration procedures, it is possible to obtain absorbed dose values and to discover their 3D representation. This goal has been reached by developing appropriate software that performs all the calculations necessary for spatial representation routines and prompt comparison with theoretical calculations.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 820
Author(s):  
Beibei Han ◽  
Mengyuan Yan ◽  
Dongying Ju ◽  
Maorong Chai ◽  
Susumu Sato

The amorphous hydrogenated (a-C:H) film-coated titanium, using different CH4/H2 and deposition times, was prepared by the ion beam deposition (IBD) method, which has the advantage of high adhesion because of the graded interface mixes at the atomic level. The chemical characterizations and corrosion behaviors of a-C:H film were investigated and evaluated by SEM, AFM, Raman spectroscopy, EPMA, TEM and XPS. An a-C:H film-coated titanium was corroded at 0.8 V, 90 °C in a 0.5 mol/L H2SO4 solution for 168 h. The metal ion concentration in the H2SO4 corrosion solution and the potentiodynamic polarization behavior were evaluated. Results indicate that a higher CH4/H2 of 1:0 and a deposition time of 12 h can result in a minimum ID/IG ratio of 0.827, Ra of 5.76 nm, metal ion concentration of 0.34 ppm in the corrosion solution and a corrosion current of 0.23 µA/cm2. The current density in this work meets the DOE’s 2020 target of 1 µA/cm2. Electrical conductivity is inversely proportional to the corrosion resistance. The significant improvement in the corrosion resistance of the a-C:H film was mainly attributed to the increased sp3 element and nanocrystalline TiC phase in the penetration layer. As a result, the a-C:H film-coated titanium at CH4/H2 = 1:0 with improved anti-corrosion behavior creates a great potential for PEMFC bipolar plates.


2013 ◽  
Vol 845 ◽  
pp. 256-260 ◽  
Author(s):  
M. Abubakar ◽  
A.B. Aliyu ◽  
Norhayati Ahmad

Porous ceramics were produced by compaction method of Nigerian clay and cassava starch. The samples were prepared by adding an amount from 5 to 30%wt of cassava starch into the clay and sintered at temperature of 900-1300°C. The influence of cassava starch content on the bulk density and apparent porosity was studied. The result of XRD and DTA/TGA shows that the optimum sintering temperature was found to be 1300°C. The percentage porosity increased from 12.87 to 43.95% while bulk density decreased from 2.16 to 1.46g/cm3 with the increase of cassava starch from 5 to 30%wt. The effect of sintering temperature and cassava starch content improved the microstructure in terms of porosity and the thermal properties of porous clay for various applications which requires a specific porosity.


1981 ◽  
Vol 59 (12) ◽  
pp. 1734-1744 ◽  
Author(s):  
Thomas M. Fyles ◽  
Virginia A. Malik-Diemer ◽  
Dennis M. Whitfield

An artificial membrane system based on a series of macrocyclic polyether carriers (crown ethers) is described. Under the influence of a proton gradient the carriers move alkali metal ions from basic to acidic solution through a chloroform membrane phase. Transport occurs against the concentration gradient of the transported ion as a result of a coupled counterflow of protons. Different transport behaviors are observed depending upon the metal ion concentration. At high metal ion concentration the amount transported is a linear function of time; at lower metal ion concentration the amount transported is a complex function of time which may be described as the result of a pair of consecutive first order processes. Effects of metal ion, carrier, and proton concentration on transport rate are considered. The rate increases with increasing metal ion or carrier concentration but is essentially independent of the pH of either aqueous phase. Increased lipophilicity of the carrier also results in a rate increase. Carriers derived from 18-crown-6 transport potassium selectively and all ions more rapidly than 15-crown-5 derivatives which are, however, selective for sodium. The overall efficiency of the system is discussed in terms of competing "leak" reactions, either of cations from the basic phase or of anions from the acidic phase.


2021 ◽  
pp. 24-38
Author(s):  
Devyanshu Sachdev ◽  
Shyam Sunder Mishra ◽  
Srinivas Tadepalli

The current work centres around on the expulsion of toxic heavy metals from mechanical effluents through the cycle of adsorption. This traditional approach is expensive, henceforth the utilization of ease, bountiful naturally neighbourly bio sorbents must be utilized. Adsorption conduct of copper and lead from waste water has been researched in this paper utilizing adsorbent like used tea powder waste. Copper and lead are profoundly harmful metal particles and considered as the need contamination delivered from different chemical ventures electroplating, blending exercises, smelting, battery manufacture etc. The effluents have been unnecessarily delivered into the climate because of expeditious industrialization and have made a worldwide concern. Hence, they should be taken out before release. In current paper, the trial results did in batch adsorption measure utilizing the treated waste tea powder with engineered test arranged in the test center were tried and introduced. The different boundaries, for example, solution’s pH, initial metal ion concentration, temperature and adsorbent dosage on the adsorption of Cu and Pb were considered. The greatest evacuation of Copper was above (at pH 5) 90% was observed using used tea waste powder at 100 ppm Copper solution. The removal of lead was above 85% (at pH 5) was respectively observed at the same operating conditions.


2019 ◽  
Vol 121 (2) ◽  
pp. 492-504 ◽  
Author(s):  
Waqar Ahmed ◽  
Arsalan Najmi ◽  
Hafiz Muhammad Faizan ◽  
Shaharyar Ahmed

PurposeThe purpose of this paper is to empirically analyze the factors affecting Muslim consumers’ willingness to pay (WTP) for Halal food, products and operations by employing theory of reasoned action.Design/methodology/approachThis study has used quantitative research methodology and collected data from 350 questionnaires from a densely populated city of Pakistan. Partial least squares-structural equation modeling was used to analyze the data.FindingsThe results show that the concerns about Halal, religiosity, perception of usefulness of Halal and product ingredients have a significant impact on WTP for Halal foods, while attitude has an insignificant impact on WTP. Moreover, the extent of demand for Halal certification is significantly affected by WTP.Originality/valueThe study highlighted the concerns of the Muslim consumers with respect to Halalness of the products and operations despite living in a Muslim country. It is recommended that the policy makers, food authorities and health institutions should conduct regular inspections of foods, products and producers’/manufacturers’ operations to ensure that all the procedures from manufacturing of the raw material till the finished goods follow Islamic principles to make them completely Halal.


Sign in / Sign up

Export Citation Format

Share Document