Experimental study on tensile strength of copper microparticles filled polymer composites printed by fused deposition modelling process

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamed Adibi ◽  
Mohammad Reza Hashemi

Purpose The purpose of this paper is to investigate the variables of the fused deposition modelling (FDM) process and improve their effect on the mechanical properties of acrylonitrile butadiene styrene (ABS) components reinforced with copper microparticles. Design/methodology/approach In the experimental approach, after drying the ABS granule, it was mixed with copper microparticles (at concentrations of 5%, 8% and 10%) in a single screw extruder to fabricate pure ABS and composite filaments. Then, by making the components by the FDM process, the tensile strength of the parts was determined through tensile strength tests. Taguchi DOE method was used to design the experiments in which nozzle temperature, filling pattern and layer thickness were the design variables. The analysis of variance (ANOVA) and signal-to-noise analysis were conducted to determine the effectiveness of each FDM process parameter on the ultimate tensile strength of printed samples. Following that, the main effect analysis was used to optimize each process parameter for pure ABS and its composite at different copper contents. Findings The study allows the layer thickness and filling pattern had the highest effects on the ultimate tensile strength of the printed materials (pure and composite) in the FDM process. Moreover, the results show that the ultimate tensile strength of the ABS composite containing 5% copper was nearly 12.3% higher than the pure ABS part. According to validation tests, the maximum error of experiments was about 0.96%. Originality/value In this paper, the effect of copper microparticles (as filling agent) was investigated on the ultimate tensile strength of printed ABS material during the FDM process.

2020 ◽  
Vol 26 (10) ◽  
pp. 1733-1738
Author(s):  
André Luiz Alves Guimarães ◽  
Vicente Gerlin Neto ◽  
Cesar Renato Foschini ◽  
Maximiliano dos Anjos Azambuja ◽  
Luiz Antonio Vasques Hellmeister

Purpose The purpose of this paper is to investigate and discuss the influence of printing parameters on the mechanical properties of acrylonitrile butadiene styrene (ABS) print by fused deposition modelling (FDM). The mechanical properties of ABS are highly influenced by printing parameters, and they determine the final product quality of printed pieces. Design/methodology/approach For the paper’s purpose, five main parameters (extrusion temperature, infill pattern, air gap, printing speed and layer thickness) were selected and varied during ABS printing on an open-source and self-replicable FDM printer. Three different colors of commercially available ABS were also used to investigate color and printing parameter’s influence on the tensile strength. Findings The research results suggest that two parameters (infill pattern and layer thickness) were most influential on the mechanical properties of print ABS, being able to enhance its tensile strength. Another key influential factor was material color selected prior to printing, which influenced the tensile strength of the print specimen. Originality/value This study provides information on print parameters’ influence on the tensile strength of ABS print on replicable open-source three-dimensional (3D) printers. It also suggests the influence of materials’ color on print pieces’ tensile strength, indicating a new parameter for materials selection for 3D printing.


2019 ◽  
Vol 16 (4) ◽  
pp. 550-559 ◽  
Author(s):  
Abhinav Chadha ◽  
Mir Irfan Ul Haq ◽  
Ankush Raina ◽  
Rana Ratna Singh ◽  
Narendra Babu Penumarti ◽  
...  

Purpose This paper aims to explore the effect of bed temperature, primary layer thickness and infill pattern (rectilinear, honeycomb, triangular) on the mechanical properties of tensile strength and bending strength of 3D printed parts. Design/methodology/approach Samples in accordance to various ASTM standards were printed by fused deposition modelling (FDM) method by varying the various input paramaters such as bed temperature, primary layer thickness and infill pattern (rectilinear, honeycomb, triangular). Tensile and bending testing was carried out on the printed parts, and post to the testing, fractography has been carried out using scanning electron microscope. Findings With increase in bed temperature tensile strength and flexural strength first increases then decreases. With the increase in primary layer thickness, tensile strength and flexural strength increase. With regard to infill patterns, triangular and honeycomb exhibit better tensile strength and better flexural strength. Practical implications The 3D printing is increasingly becoming important for manufacturing of engineering parts, determining the process parameters which could result in better mechanical and physical properties shall certainly help designers and manufacturers globally. Originality/value This work elucidates the effect of various process parameters of FDM on tensile and flexural properties of the samples.


2018 ◽  
Vol 24 (6) ◽  
pp. 921-934 ◽  
Author(s):  
Mohammad Abu Hasan Khondoker ◽  
Asad Asad ◽  
Dan Sameoto

Purpose This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion. Design/methodology/approach In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously. Findings The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments. Originality/value In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1333 ◽  
Author(s):  
Adrián Rodríguez-Panes ◽  
Juan Claver ◽  
Ana Camacho

This paper presents a comparative study of the tensile mechanical behaviour of pieces produced using the Fused Deposition Modelling (FDM) additive manufacturing technique with respect to the two types of thermoplastic material most widely used in this technique: polylactide (PLA) and acrylonitrile butadiene styrene (ABS). The aim of this study is to compare the effect of layer height, infill density, and layer orientation on the mechanical performance of PLA and ABS test specimens. The variables under study here are tensile yield stress, tensile strength, nominal strain at break, and modulus of elasticity. The results obtained with ABS show a lower variability than those obtained with PLA. In general, the infill percentage is the manufacturing parameter of greatest influence on the results, although the effect is more noticeable in PLA than in ABS. The test specimens manufactured using PLA perform more rigidly and they are found to have greater tensile strength than ABS. The bond between layers in PLA turns out to be extremely strong and is, therefore, highly suitable for use in additive technologies. The methodology proposed is a reference of interest in studies involving the determination of mechanical properties of polymer materials manufactured using these technologies.


Author(s):  
Andrew Aitchison ◽  
Qing Wang

Abstract Additive manufacture, specifically Fused Deposition Modeling (FDM), is an advancing manufacture method opening up new possibilities in design previously impossible to machine, in a relatively affordable way. However, its use in functional products is limited due to anisotropic strength and reduced strength from injection molded components. This paper aims to increase the tensile strength of Acrylonitrile Butadiene Styrene (ABS) in the weakest direction (Z axis), where poor interlayer fusion and air gaps between extruded trails reduce strength. Extra thermal energy was applied to the top surface layer during the printing process (through hot air) to encourage more polymer chain diffusion across the boundary, and spreading out to fill air gaps. Multiple tensile test samples were printed at a variety of heat levels. The ultimate tensile strength σuts was plotted against these temperatures and a weak positive correlation was found. However, only air temperatures above 81°C increased strength past the control to a maximum of 1.4MPa. Heat application has proven to increase tensile strength, but needs to be applied with a more precise method, to the boundary interface, to allow greater thermal energy transfer without sacrificing print quality.


2020 ◽  
Vol 40 (5) ◽  
pp. 745-754
Author(s):  
Gurpartap Singh ◽  
Rupinder Singh ◽  
S.S. Bal

Purpose The purpose of this study is to investigate dimensional accuracy (Δd), surface roughness (Ra) and micro hardness (HV) of partial dentures (PD) prepared with synergic combination of fused deposition modelling (FDM) assisted chemical vapour smoothing (CVS) patterns and conventional dental casting (DC) from multi-factor optimization view point. Design/methodology/approach The master pattern for PD was prepared with acrylonitrile butadiene styrene (ABS) thermoplastic on FDM set-up (one of the low cost additive manufacturing process) followed by CVS process. The final PD as functional prototypes was casted with nickel–chromium-based (Ni-Cr) alloy by varying Ni% (Z). The other input parameters were powder to water ratio P/W (X) and pH value (Y) of water used. Findings The results of this study suggest that for controlling the Δd and Ra of the PD, most important factor is X, followed by Z. For hardness of PD, the most important factor is Z. But from overall optimization viewpoint, the best settings are X-100/12, Y-10 and Z-61% (in Ni-Cr alloy). Further, based upon X-bar chart (for HV), the FDM-assisted DC process used for preparation of PD is statistically controlled. Originality/value This study highlights that PD prepared with X-100/12, Y-10 and Z-61% gives overall better results from multi-factor optimization view point. Finally, X-bar chart has been plotted to understand the statistical nature of the synergic combination of FDM, CVS and DC.


2019 ◽  
Vol 25 (4) ◽  
pp. 765-774 ◽  
Author(s):  
Prithvirajan R. ◽  
Sugavaneswaran M. ◽  
Sathishkumar N. ◽  
Arumaikkannu G.

Purpose Custom-designed metal bellows require alternate ways to produce the die to shorten lead time. The purpose of this study is to explore the possibility of using Additive Manufactured (AM) polymer die as direct rapid tool (RT) for metal bellow hydroforming. Design/methodology/approach Finite element analysis (FEA) was used to simulate bellow forming and to evaluate the compatibility of AM die. Fused deposition modelling (FDM) technique is used to fabricate die with Acrylonitrile Butadiene Styrene (ABS) material. To validate, the width of the metal bellow convolutions obtained from the FEA simulation is compared with convolution formed during the experiment. Findings FDM-made die can be used for a short production run of bellow hydroforming. FEA simulation shows that stress developed in some regions of die is less and these regions have potential for material reduction. Use of RT for this particular application is limited by the die material, forming pressure, width, convolution span and material of bellow. This supports the importance of FEA validation of RT before fabrication to evaluate and redesign die for the successful outcome of the tool. Research limitations/implications The given methodology may be followed to design a RT with minimum material consumption for bellow forming application. Whenever there is a change in bellow design or the die material, simulation has to be done to evaluate the capability of the die. As this study was focused on a short production run for manufacturing one or few bellows, the die life is not a significant factor. Originality/value This paper demonstrates about rapid tooling for metal bellow manufacturing using FDM technique for low volume production. Further, FEA is used to identify low stress regions and redesign the die for material reduction before die manufacturing. AM die can be used for developing customized metal bellow for applications such as defense, aerospace, automobiles, etc.


2020 ◽  
Vol 26 (1) ◽  
pp. 122-133 ◽  
Author(s):  
Sofiane Guessasma ◽  
Sofiane Belhabib ◽  
Hedi Nouri

Purpose This paper aims to investigate the effect of printing temperature on the thermal and the mechanical behaviour of polylactic acid (PLA)-polyhydroxyalkanoate (PHA) blend printed using fused deposition modelling (FDM). Design/methodology/Approach Because of the use of an infra-red camera, thermal cycling during the laying down is quantified. In addition, X-ray micro-tomography is considered to reveal the microstructural arrangement within the three-dimensional printed material. Tensile loading conditions are used to derive Young’s modulus, tensile strength and fracture toughness, and relate these to the printing temperature. Finite element computation based on three-dimensional microstructure information is used to predict the role of defects on the tensile performance. Findings The results show a remarkable cohesive structure of PLA-PHA, particularly at 240°C. This cohesive structure is explained by the ability to ensure heat accumulation during laying down as evidenced by the nature of thermal cycling. The printing temperature is found to be a key factor for tuning the ductility of the printed PLA-PHA allowing full restoration of tensile strength at high printing temperature. Originality/value This study reports new results related to the thermo-mechanical behaviour of PLA-PHA that did not receive much attention in three-dimensional printing despite its potential as a candidate for pharmacological and medical applications. This study concludes by a wide range of possible printing temperatures for PLA-PHA and a remarkable low porosity generated by FDM.


2020 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Arivazhagan Selvam ◽  
Suresh Mayilswamy ◽  
Ruban Whenish ◽  
Rajkumar Velu ◽  
Bharath Subramanian

The most common method to fabricate both simple and complex structures in the additive manufacturing process is fused deposition modeling (FDM). Many researchers have studied the strengthening of FDM components by adding short carbon fibers (CF) or by reinforcing solid carbon fiber rods. In the current research, we sought to enhance the mechanical properties of FDM components by adding bioinspired solid CF rods during the fabrication process. An effective bonding interface of bioinspired CF rods and polylactic acid (PLA) was achieved by triangular interlocking sutures and by employing synthetic glue as the binding agent. In particular, the tensile strength of solid CF rod reinforced PLA samples was studied. Critical parameters such as layer thickness, extruder temperature, extruder speed, and shell thickness were considered for optimization. Significant process parameters were identified through leverage plots using the response surface methodology (RSM). The optimum parameters were found to be layer thickness of 0.04 mm, extruder temperature of 215 °C, extruder speed of 60 mm/s, and shell thickness of 1.2 mm. The results revealed that the bioinspired solid CF rod reinforced PLA (CFRPLA) composite exhibited a tensile strength of 82.06 MPa, which was approximately three times higher than the pure PLA (28 MPa, 66% lower than CFRPLA), acrylonitrile butadiene styrene (ABS) (28 MPa, 66% lower than CFRPLA), polyethylene terephthalate glycol (PETG) (34 MPa, 60% lower than CFRPLA), and nylon (34 MPa, 60% lower than CFRPLA) samples.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 93
Author(s):  
Muhammad Harris ◽  
Johan Potgieter ◽  
Hammad Mohsin ◽  
Karnika De Silva ◽  
Marie-Joo Le Guen

Acrylonitrile butadiene styrene (ABS) is a renowned commodity polymer for additive manufacturing, particularly fused deposition modelling (FDM). The recent large-scale applications of 3D-printed ABS require stable mechanical properties than ever needed. However, thermochemical scission of butadiene bonds is one of the contemporary challenges affecting the overall ABS stability. In this regard, literature reports melt-blending of ABS with different polymers with high thermal resistance. However, the comparison for the effects of different polymers on tensile strength of 3D-printed ABS blends was not yet reported. Furthermore, the cumulative studies comprising both blended polymers and in-process thermal variables for FDM were not yet presented as well. This research, for the first time, presents the statistical comparison of tensile properties for the added polymers and in-process thermal variables (printing temperature and build surface temperature). The research presents Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) to explain the thermochemical reasons behind achieved mechanical properties. Overall, ABS blend with PP shows high tensile strength (≈31 MPa) at different combinations of in-process parameters. Furthermore, some commonalities among both blends are noted, i.e., the tensile strength improves with increase of surface (bed) and printing temperature.


Sign in / Sign up

Export Citation Format

Share Document