Rooftop photovoltaic system allocation to improve the distribution transformers life span using golden ratio optimization algorithm

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Amin Sobouti ◽  
Mehdi Bigdeli ◽  
Davood Azizian

Purpose This paper aims to evaluate the effect of optimal use of rooftop photovoltaic (PV) systems on improving the loss of life (LOL) of distribution transformers, reducing power losses as well as the unbalance rate of the 69-bus distribution network. Design/methodology/approach The problem is studied in three scenarios, considering different objective functions as multi-objective optimization in balanced and unbalanced operations. Meta-heuristic golden ratio optimization method (GROM) is used to determine the optimal size of the rooftop PV in the network. Findings The simulation results show that in all scenarios, the GROM by optimally installing the rooftop PV is significantly capable to reduce the transformer distribution loss of loss, unbalance rate and power loss as well as reduce the temperature of the oil and transformer winding. Also, the lowest %LOL, power loss and unbalance rate occurred in the second scenario for the balanced network and first scenario, respectively. In addition, the results showed that the unbalance of the network results in increased power losses and LOL of the distribution transformer. Originality/value The better capability of GROM is proved compared with the grey wolf optimization algorithm with better objective function and by achieving better values of LOL, unbalance rate and power loss. The results also showed that the %LOL, unbalance and power losses are weakened compared to without considering the PV cost but the achieved results are realistic and cost-effective.

2019 ◽  
Vol 6 (2) ◽  
pp. 7
Author(s):  
I. K. A. Wijaya ◽  
R. S. Hartati ◽  
I W. Sukerayasa

Saba feeder is a feeder who supplies 78 distribution transformers with feeder length 38,959 kms, through this Saba feeder electrical energy is channeled radially to each distribution substation. In 2017 the voltage shrinkage at Saba feeder was 9.88% (18,024 kV) while the total power loss was 445.5 kW. In this study an attempt was made to overcome the voltage losses and power losses using the method of optimizing bank capacitors with genetic algorithms and network reconfiguration. The best solution obtained from this study will be selected for repair of voltage losses and power losses in Saba feeders. The results showed that by optimizing bank capacitors using genetic algorithms, the placement of capacitor banks was placed on bus 23 (the channel leading to the BB0024 transformer) and successfully reduced the power loss to 331.7 kW. The network reconfiguration succeeded in fixing the voltage on the Saba feeder with a voltage drop of 4.75% and a total power loss of 182.7 kW. With the combined method, reconfiguration and optimization of bank capacitors with genetic algorithms were obtained on bus 27 (channel to transformer BB0047) and managed to reduce power losses to 143 kW.


2020 ◽  
Vol 64 (2) ◽  
pp. 157-169
Author(s):  
Benalia M'hamdi ◽  
Madjid Teguar ◽  
Benaissa Tahar

The optimal allocation and size of decentralized generating units are essential to minimize power losses, while meeting the demand for active and reactive power in a distribution system. In other words, most of the total energy produced can be efficiently exploited by end users. In addition, if the DGs are of optimal size and location in the distribution system, the reliability, stability and efficiency of the power system are guaranteed. This paper focuses on reducing power losses and improving the voltage profile by accurately identifying the optimal location and sizing of Distributed Generation based on three indexes, namely the IVM Index Vector Method, the VDI Voltage Deviation Index and the VSI Voltage Stability Index. Two types of DGs were considered for the analysis: DGs operating with unit power factor and DGs operating with a lagging power factor. Three optimization algorithms are applied to determine the optimal sizes of decentralized generation units in a power distribution network which are GWO, WOA and PSO. The results obtained in this article show that the three algorithms give very similar values. DG at lagging power factor gives better results compared with those obtained with DGs at unity power factor. In terms of loss reduction and minimum bus voltage, the best results are obtained for the VSI index with a DG at a power factor of 0.9.


Author(s):  
Mohammad Amin Jarrahi ◽  
Emad Roshandel ◽  
Mehdi Allahbakhshi ◽  
Mohammad Ahmadi

Purpose This paper aims to achieve an optimal design for distribution transformers considering cost and power losses. Particle swarm optimization (PSO) algorithm is used as an optimization tool for minimizing the objective functions of design procedure which are cost and electrical and iron losses. Design/methodology/approach In this paper, distribution transformer losses are considered as operating costs. Also, transformer construction cost which depends on the amount of iron and copper in the structure is assumed as its initial cost. In addition, some other important constraints such as appropriate ranges of transformer efficiency, voltage regulation, temperature rise, no-load current, and winding fill factor are investigated in the design procedure. The PSO algorithm is applied to find optimum amount of needed copper and iron for a typical distribution transformer. Moreover, transformer impedance considered as a constraint to achieve an acceptable voltage regulation in the design process. Findings It is shown that the proposed design procedure provides a simple and effective approach to estimate the flux and current densities for minimizing the active part cost and active power losses which means reduction in amount of transformer total owning cost (TOC). Originality/value The methodology advances a proposal for reducing distribution transformers costs using PSO algorithm. The approach considers the aforementioned constraints and TOC to minimize the active part cost and maximize the efficiency. It is demonstrated that a designed transformer will not be optimum when the transformer losses over years are not considered in design procedure. Finally, the results prove the effectiveness of the proposed procedure in designing cost-effective distribution transformers from its initial cost until its whole life.


Author(s):  
Mohamed Abdelhamed Zaki ◽  
Tarek Mahmoud ◽  
Mohamed Atia ◽  
EL Said Abd El Aziz Osman

<p><span lang="EN-US">Increasing penetration of EV load into the electricity sector will result in generation imbalance, an increase in real power loss, a low voltage profile and consequently a decrease in the margin of stability of voltage. It is necessary for the coordination of charging stations (CSs) for EV at the relevant locations to minimize the effect of increased EV load penetration in radial systems. In this paper, a new optimization method named Archimedes optimization algorithm (AOA) is proposed; it determined the optimal location and size for EV-CS for reducing power losses and improved voltage profile. In this work we used the photo voltaic (PV) renewable source as a main feeder for the CSs. Many of Artificial Intelligence technique are applied to determine the optimal sizing and sitting of EV-CSs considering the objective of minimization of real power loss. IEEE 33-bus testing network conducts simulation tests. The results highlighted the need to refine the EV-CS allocation to improve the performance. The ability to solve complex, non-linear objective optimization issues using AOA and to compare the results with other algorithms, namely particle swarm optimization (PSO), Cuckoo search algorithm (CSA), shows its effectiveness in minimizing the power loss as required.</span></p>


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Andres Clarens ◽  
Amir Younan ◽  
Shibo Wang ◽  
Paul Allaire

Lubricants are necessary in tilting-pad journal bearings to ensure separation between solid surfaces and to dissipate heat. They are also responsible for much of the undesirable power losses that can occur through a bearing. Here, a novel method to reduce power losses in tilting-pad journal bearings is proposed in which the conventional lubricant is substituted by a binary mixture of synthetic lubricant and dissolved CO2. These gas-expanded lubricants (GELs) would be delivered to a reinforced bearing housing capable of withstanding modest pressures less than 10 MPa. For bearings subject to loads that are both variable and predictable, GELs could be used to adjust lubricant properties in real time. High-pressure lubricants, mostly gases, have already been explored in tilting-pad journal bearings as a means to accommodate higher shaft speeds while reducing power losses and eliminating the potential for thermal degradation of the lubricant. These gas-lubricated bearings have intrinsic limitations in terms of bearing size and load capacity. The proposed system would combine the loading capabilities of conventional lubricated bearings with the efficiency of gas-lubricated bearings. The liquid or supercritical CO2 serves as a low-viscosity and completely miscible additive to the lubricant that can be easily removed by purging the gas after releasing the pressure. In this way, the lubricant can be fully recycled, as in conventional systems, while controlling the lubricant properties dynamically by adding liquid or supercritical CO2. Lubricant properties of interest, such as viscosity, can be easily tuned by controlling the pressure inside the bearing housing. Experimental measurements of viscosity for mixtures of polyalkylene glycol (PAG)+CO2 at various compositions demonstrate that significant reductions in mixture viscosity can be achieved with relatively small additions of CO2. The measured parameters are used in a thermoelastohydrodynamic model of tilting-pad journal bearing performance to evaluate the bearing response to GELs. Model estimates of power loss, eccentricity ratio, and pad temperature suggest that bearings would respond quite favorably over a range of speed and preload conditions. Calculated power loss reductions of 20% are observed when compared with both a reference petroleum lubricant and PAG without CO2. Pad temperature is also maintained without significant increases in eccentricity ratio. Both power loss and pad temperature are directly correlated with PAG-CO2 composition, suggesting that these mixtures could be used as “smart” lubricants responsive to system operating conditions.


2019 ◽  
Vol 64 (3) ◽  
pp. 1-12 ◽  
Author(s):  
Brian J. Connolly ◽  
Eric Loth ◽  
Philip H. Snyder ◽  
C. Frederic Smith

An inertial particle separator (IPS) is a particulate removal device typically installed at the inlet of a gas turbine to mitigate effects of sand ingestion on the engine. This system can minimize particulate ingestion during helicopter landings in austere brownout conditions so as to increase engine life. Typically, IPS systems have lower engine power losses than alternative engine inlet filtration technologies. The present study investigates the effect of IPS particle removal and power losses as a function of scavenge leg geometry. Performance was evaluated based on particle separation efficiency, particle image velocimetry, and surface flow visualization, as well as power loss and mass flow rate variations. Of the various scavenge geometries considered, it was found that flow constriction with a hub-side ramp most improved separation efficiency, while also stabilizing mass flow rates and generally reducing power loss. This is attributed to a reduction in the level of flow separation by the addition of a favorable pressure gradient and geometry changes downstream of the attached flow region.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saravanan R. ◽  
Vijayshankar S. ◽  
Sathyaseelan Sathyaseelan ◽  
Suresh K.

Purpose This paper aims to propose Hidden Converter (H-Converter) combined with dual port 3Ø inverter for energy storage application to produce wide range of voltage. Some of the application required wide range of voltages, but problem from E-chopper is either boost or buck mode of operations, both modes are not possible. To overcome this drawback, H-Converter is combined with dual port 3Ø inverter controlled by carrier-based pulse width modulation (CB-PWM) technique is added with zero sequence injection. Design/methodology/approach Hidden converter is a bidirectional DC-DC chopper used to convert fixed DC to variable DC and vice versa in both buck and boost modes of operations. Dual port inverter is combined with hidden DC-DC converter can produce wide range of voltages. Findings The bidirectional DC-AC converter requires less power for processing and consumes less power losses by using modest carrier built- pulse width modulation scheme through proposed zero structure addition. Originality/value By using this proposed strategy H-Converter can produce wide range of voltage in both the sides and mostly power is processed in the 3Ø inverter with a one stage conversion with less power loss. As a result, with one stage power conversion has more efficiency because of less power loss. This proposed converter has designed by analysis, and the real time result is tested in an experiment.


2018 ◽  
Vol 92 (3) ◽  
pp. 345-354 ◽  
Author(s):  
Robert Goraj

PurposeThe purpose of this paper is to devise an analytical approach to calculate conductor winding losses, considering multiple contributing aspects simultaneously. These include the geometric configuration of coil windings, frequency of the electric current and the dependency on the coil temperature, derived studying a coupled fluid–solid model considering the cooling system characteristics. The obtained results allow identifying power loss trends according to such system variables as coolant inlet temperature or overall flow rate of the motor.Design/methodology/approachAn easy-to-use coupled analytical approach is applied, which is suitable for rapid estimations of the impact of parameter variation on the resulting conductor winding power losses that facilitates decision-making in the design process of electric aircraft engines.FindingsIn the considered cooling parameters, the overall conductor winding power losses vary approximately between 6 kW and 7.2 kW. More than 95 per cent of this loss is because of direct current losses. These losses cause the variation in maximal coil temperature ranging between 115°C and 170°C.Practical implicationsThe SP260D motor is set and was currently tested in Extra 330. It recently broke two world records.Social implicationsOne of the current trends in aircraft engineering is electric aircraft. Advantages of electric aircraft include improved manoeuvrability because of greater torque from electric motors, increased safety because of decreased chance of mechanical failure, less risk of explosion or fire in the event of a collision and less noise. There will be environmental and cost benefits associated with the elimination of dependency on fossil fuels and resultant emissions.Originality/valueThe use of a novel fluid–solid interaction model for predicting conductor winding power loss of the SP260D electric aircraft motor has not been done earlier. A novel alternative derivation of the widely applied Dowell’s formula (Dowell, 1966) is presented for the estimation of proximity losses in square winding conductors.


Author(s):  
E. M. Abdallah ◽  
M. I. El Sayed ◽  
M. M. Elgazzar ◽  
Amal A. Hassan

Research on the integration of renewable distributed generators (RDGs) in radial distribution systems (RDS) is increased to satisfy the growing load demand, reducing power losses, enhancing voltage profile, and voltage stability index (VSI) of distribution network. This paper presents the application of a new algorithm called ‘coyote optimization algorithm (COA)’ to obtain the optimal location and size of RDGs in RDS at different power factors. The objectives are minimization of power losses, enhancement of voltage stability index, and reduction total operation cost. A detailed performance analysis is implemented on IEEE 33 bus and IEEE 69 bus to demonstrate the effectiveness of the proposed algorithm. The results are found to be in a very good agreement.


High power losses are a great concern in operating electric distribution system. Reconfiguration is one of the most economic approaches for reducing power losses of the system. This study suggests a technique for dealing with the distribution system reconfiguration problem based on a water cycle algorithm for minimizing active power loss. The water cycle algorithm is a recently developed metaheuristic algorithm that inspired the process of water circulation for solving optimization problems. The effectiveness and performance of the water cycle algorithm were tested on the 33-node and 69-node systems. The water cycle algorithm was applied to determine the best configuration of the distribution system for active power loss minimization. The results yielded by the water cycle algorithm were compared with other optimization algorithms in the literature and the comparisons showed that the water cycle algorithm obtained good quality of solution for the problem. Therefore, the water cycle algorithm is the potential method for the distribution system reconfiguration problem.


Sign in / Sign up

Export Citation Format

Share Document