A physically based scalable SPICE model for silicon carbide power MOSFETs

Author(s):  
Canzhong He ◽  
James Victory ◽  
Mehrdad Baghaie Yazdi ◽  
Kwangwon Lee ◽  
Martin Domeij ◽  
...  
Author(s):  
James Victory ◽  
Scott Pearson ◽  
Stan Benczkowski ◽  
Tirthajyoti Sarkar ◽  
Hyeongwoo Jang ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 187 ◽  
Author(s):  
Kamil Bargieł ◽  
Damian Bisewski ◽  
Janusz Zarębski

The paper deals with the problem of modelling and analyzing the dynamic properties of a Junction Field Effect Transistor (JFET) made of silicon carbide. An examination of the usefulness of the built-in JFET Simulation Program with Integrated Circuit Emphasis (SPICE) model was performed. A modified model of silicon carbide JFET was proposed to increase modelling accuracy. An evaluation of the accuracy of the modified model was performed by comparison of the measured and calculated capacitance–voltage characteristics as well as the switching characteristics of JFETs.


Author(s):  
Gianpaolo Romano ◽  
Asad Fayyaz ◽  
Michele Riccio ◽  
Luca Maresca ◽  
Giovanni Breglio ◽  
...  

Author(s):  
James A. Cooper ◽  
Dallas T. Morisette ◽  
Madankumar Sampath ◽  
Cheryl A. Stellman ◽  
Stephen B. Bayne ◽  
...  

2012 ◽  
Vol 59 (6) ◽  
pp. 3258-3264 ◽  
Author(s):  
A. Akturk ◽  
J. M. McGarrity ◽  
S. Potbhare ◽  
N. Goldsman

2017 ◽  
Vol 897 ◽  
pp. 501-504 ◽  
Author(s):  
Si Yang Liu ◽  
Yi Fan Jiang ◽  
Woong Je Sung ◽  
Xiao Qing Song ◽  
B. Jayant Baliga ◽  
...  

High temperature capability of silicon carbide (SiC) power MOSFETs is becoming more important as power electronics faces wider applications in harsh environments. In this paper, comprehensive static and dynamic parameters of 1.2 kV SiC MOSFETs have been measured up to 250°C. The electrical behaviors with the temperature have been analyzed using the basic device physics and analytical models.


1996 ◽  
Vol 424 ◽  
Author(s):  
M. D. Jacunski ◽  
M. S. Shur ◽  
T. Ytterdal ◽  
A. A. Owusu ◽  
M. Hack

AbstractWe present an analytical SPICE model for the AC and DC characteristics of n and p channel polysilicon TFTs which scales fully with channel length and width in all regimes of operation (leakage, subthreshold, above threshold, and kink) and accounts for the frequency dispersion of the capacitance. Once physically based parameters have been extracted from long channel TFTs, which include the gate length and drain bias dependencies of the device parameters, our model accurately reproduces short channel device characteristics. The AC model includes the input channel resistance in series with the gate oxide capacitance. As a result, our model is able to fit the frequency dispersion of the device capacitances. The model has been implemented in the AIM-Spice simulator and good agreement is observed between measured and modeled results for gate lengths down to 4 gim.


2018 ◽  
Vol 924 ◽  
pp. 735-738 ◽  
Author(s):  
Selamnesh Nida ◽  
Thomas Ziemann ◽  
Bhagyalakshmi Kakarla ◽  
Ulrike Grossner

When power MOSFETs experience a voltage spike initiating avalanche generation, a large amount of power is dissipated at the device junction. This leads to self-heating and lowers the threshold voltage. Some sources indicate that unintended opening of the channel creates a positive feedback, thereby increasing heat generation and leading to thermal runaway. Therefore, keeping MOSFETs off by applying a negative gate bias should improve avalanche ruggedness. In this report, this claim is investigated by comparing single pulse avalanche ruggedness of commercial 1.2 kV, 80 mΩ planar and trench MOSFETs at -10 V and 0 V off-state gate bias. Both planar and trench devices show a small increase in their breakdown voltage with negative gate bias. However, there is no significant difference in avalanche withstanding energy. Even in investigated trench gate devices where the gate oxide is susceptible to interface as well as oxide defects, keeping the gate voltage at VGS = -10 V did not result in improvements in ruggedness.


Sign in / Sign up

Export Citation Format

Share Document