Virtual metrology for prediction of etch depth in a trench etch process

Author(s):  
Georg Roeder ◽  
Martin Schellenberger ◽  
Lothar Pfitzner ◽  
Sirko Winzer ◽  
Stefan Jank
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3005
Author(s):  
Jiwon Kwon ◽  
Sangwon Ryu ◽  
Jihoon Park ◽  
Haneul Lee ◽  
Yunchang Jang ◽  
...  

In the semiconductor etch process, as the critical dimension (CD) decreases and the difficulty of the process control increases, in-situ and real-time etch profile monitoring becomes important. It leads to the development of virtual metrology (VM) technology, one of the measurement and inspection (MI) technology that predicts the etch profile during the process. Recently, VM to predict the etch depth using plasma information (PI) variables and the etch process data based on the statistical regression method had been developed and demonstrated high performance. In this study, VM using PI variables, named PI-VM, was extended to monitor the etch profile and investigated the role of PI variables and features of PI-VM. PI variables are obtained through analysis on optical emission spectrum data. The features in PI-VM are investigated in terms of plasma physics and etch kinetics. The PI-VM is developed to monitor the etch depth, bowing CD, etch depth times bowing CD (rectangular model), and etch area model (non-rectangular model). PI-VM for etch depth and bowing CD showed high prediction accuracy of R-square value (R2) 0.8 or higher. The rectangular and non-rectangular etch area model PI-VM showed prediction accuracy R2 of 0.78 and 0.49, respectively. The first trial of virtual metrology to monitor the etch profile will contribute to the development of the etch profile control technology.


Author(s):  
Y. Pan

The D defect, which causes the degradation of gate oxide integrities (GOI), can be revealed by Secco etching as flow pattern defect (FPD) in both float zone (FZ) and Czochralski (Cz) silicon crystal or as crystal originated particles (COP) by a multiple-step SC-1 cleaning process. By decreasing the crystal growth rate or high temperature annealing, the FPD density can be reduced, while the D defectsize increased. During the etching, the FPD surface density and etch pit size (FPD #1) increased withthe etch depth, while the wedge shaped contours do not change their positions and curvatures (FIG.l).In this paper, with atomic force microscopy (AFM), a simple model for FPD morphology by non-crystallographic preferential etching, such as Secco etching, was established.One sample wafer (FPD #2) was Secco etched with surface removed by 4 μm (FIG.2). The cross section view shows the FPD has a circular saucer pit and the wedge contours are actually the side surfaces of a terrace structure with very small slopes. Note that the scale in z direction is purposely enhanced in the AFM images. The pit dimensions are listed in TABLE 1.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Jongwon Lee ◽  
Kilsun Roh ◽  
Sung-Kyu Lim ◽  
Youngsu Kim

This is the first demonstration of sidewall slope control of InP via holes with an etch depth of more than 10 μm for 3D integration. The process for the InP via holes utilizes a common SiO2 layer as an InP etch mask and conventional inductively coupled plasma (ICP) etcher operated at room temperature and simple gas mixtures of Cl2/Ar for InP dry etch. Sidewall slope of InP via holes is controlled within the range of 80 to 90 degrees by changing the ICP power in the ICP etcher and adopting a dry-etched SiO2 layer with a sidewall slope of 70 degrees. Furthermore, the sidewall slope control of the InP via holes in a wide range of 36 to 69 degrees is possible by changing the RF power in the etcher and introducing a wet-etched SiO2 layer with a small sidewall slope of 2 degrees; this wide slope control is due to the change of InP-to-SiO2 selectivity with RF power.


Author(s):  
Natalie Gentner ◽  
Andreas Kyek ◽  
Yao Yang ◽  
Mattia Carletti ◽  
Gian Antonio Susto

2003 ◽  
Author(s):  
Kenji Noguchi ◽  
Shiho Sasaki ◽  
Yuuichi Yoshida ◽  
Takashi Adachi ◽  
Tsukasa Abe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document