Low cost photoresist stripper composition for wafer level packaging technology

Author(s):  
Jianghua Liu ◽  
Pengcheng Wang ◽  
Bing Liu ◽  
Libbert Peng
Author(s):  
Steffen Kroehnert ◽  
André Cardoso ◽  
Steffen Kroehnert ◽  
Raquel Pinto ◽  
Elisabete Fernandes ◽  
...  

The Internet of Things/ Everything (IoT/E) will require billions of single or multiple MEMS/Sensors integrated in modules together with other functional building blocks like processor, memory, connectivity, built-in security, power management, energy harvesting, and battery charging. The success of IoT/E will also depend on the selection of the right Packaging Technology. The winner will be the one achieving the following key targets: best electrical and thermal system performance, miniaturization by dense system integration, effective MEMS/Sensors fusion into the systems, manufacturability in high volume at low cost. MEMS/Sensors packaging in low cost molded packages on large manufacturing formats has always been a challenge, whether because of the parameter drift of the sensors caused by the packaging itself or, as in many cases, the molded packaging technology is not compatible to the way MEMS/Sensors are working. Wafer-Level Packaging (WLP), namely Fan-Out WLP (FOWLP) technologies such as eWLB, WLFO, RCP, M-Series and InFO are showing good potential to meet those requirements and offer the envisioned system solutions. FOWLP will grow with CAGR between 50–80% until 2020, forecasted by the leading market research companies in this field. System integration solutions (WLSiP and WL3D) will dominate FOWLP volumes in the future compared to current single die FOWLP packages for mobile communication. The base technology is available and has proven maturity in high volume production, but for dense system integration of MEMS/Sensors, additional advanced building blocks need to be developed and qualified to extend the technology platform. The status and most recent developments on NANIUM's WLFO technology, which is based on Infineon's/Intel's eWLB technology, aiming to overcome the current limits for MEMS/Sensors integration, will be presented in this paper. This will cover the processing of Keep-Out Zones (KOZ) for MEMS/Sensors access to environment in molded wafer-level packages, mold stress relief on dies for MEMS/Sensors die decoupling from internal package stress, thin-film shielding using PVD seed layer as functional layer, and heterogeneous dielectrics stacking, in which different dielectric materials fulfill different functions in the package, including the ability to integrate Microfluidic.


2012 ◽  
Vol 132 (8) ◽  
pp. 246-253 ◽  
Author(s):  
Mamoru Mohri ◽  
Masayoshi Esashi ◽  
Shuji Tanaka

2013 ◽  
Vol 21 (1) ◽  
pp. 215-219 ◽  
Author(s):  
M. Han ◽  
S. F. Wang ◽  
G. W. Xu ◽  
Le Luo

Author(s):  
Kavin Senthil Murugesan ◽  
Mykola Chernobryvko ◽  
Sherko Zinal ◽  
Marco Rossi ◽  
Ivan Ndip ◽  
...  

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001378-001407
Author(s):  
Tim Mobley ◽  
Roupen Keusseyan ◽  
Tim LeClair ◽  
Konstantin Yamnitskiy ◽  
Regi Nocon

Recent developments in hole formations in glass, metalizations in the holes, and glass to glass sealing are enabling a new generation of designs to achieve higher performance while leveraging a wafer level packaging approach for low cost packaging solutions. The need for optical transparency, smoother surfaces, hermetic vias, and a reliable platform for multiple semiconductors is growing in the areas of MEMS, Biometric Sensors, Medical, Life Sciences, and Micro Display packaging. This paper will discuss the types of glass suitable for packaging needs, hole creation methods and key specifications required for through glass vias (TGV's). Creating redistribution layers (RDL) or circuit layers on both sides of large thin glass wafer poses several challenges, which this paper will discuss, as well as, performance and reliability of the circuit layers on TGV wafers or substrates. Additionally, there are glass-to-glass welding techniques that can be utilized in conjunction with TGV wafers with RDL, which provide ambient glass-to-glass attachments of lids and standoffs, which do not outgas during thermal cycle and allow the semiconductor devices to be attached first without having to reflow at lower temperatures. Fabrication challenges, reliability testing results, and performance of this semiconductor packaging system will be discussed in this paper.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001486-001519
Author(s):  
Curtis Zwenger ◽  
JinYoung Khim ◽  
YoonJoo Khim ◽  
SeWoong Cha ◽  
SeungJae Lee ◽  
...  

The tremendous growth in the mobile handset, tablet, and networking markets has been fueled by consumer demand for increased mobility, functionality, and ease of use. This, in turn, has been driving an increase in functional convergence and 3D integration of IC devices, resulting in the need for more complex and sophisticated packaging techniques. A variety of advanced IC interconnect technologies are addressing this growing need, such as Thru Silicon Via (TSV), Chip-on Chip (CoC), and Package-on-Package (PoP). In particular, the emerging Wafer Level Fan-Out (WLFO) technology provides unique and innovative extensions into the 3D packaging realm. Wafer Level Fan-Out is a package technology designed to provide increased I/O density within a reduced footprint and profile for low density single & multi-die applications at a lower cost. The improved design capability of WLFO is due, in part, to the fine feature capabilities associated with wafer level packaging. This can allow much more aggressive design rules to be applied compared to competing laminate-based technologies. In addition, the unique characteristics of WLFO enable innovative 3D structures to be created that address the need for IC integration in emerging mobile and networking applications. This paper will review the development of WLFO and its extension into unique 3D structures. In addition, the advantages of these WLFO designs will be reviewed in comparison to current competing packaging technologies. Process & material characterization, design simulation, and reliability data will be presented to show how WLFO is poised to provide robust, reliable, and low cost 3D packaging solutions for advanced mobile and networking products.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000425-000445
Author(s):  
Paul Siblerud ◽  
Rozalia Beica ◽  
Bioh Kim ◽  
Erik Young

The development of IC technology is driven by the need to increase performance and functionality while reducing size, power and cost. The continuous pressure to meet those requirements has created innovative, small, cost-effective 3-D packaging technologies. 3-D packaging can offer significant advantages in performance, functionality and form factor for future technologies. Breakthrough in wafer level packaging using through silicon via technology has proven to be technologically beneficial. Integration of several key and challenging process steps with a high yield and low cost is key to the general adoption of the technology. This paper will outline the breakthroughs in cost associated with an iTSV or Via-Mid structure in a integrated process flow. Key process technologies enabling 3-D chip:Via formationInsulator, barrier and seed depositionCopper filling (plating),CMPWafer thinningDie to Wafer/chip alignment, bonding and dicing This presentation will investigate these techniques that require interdisciplinary coordination and integration that previously have not been practiced. We will review the current state of 3-D interconnects and the of a cost effective Via-first TSV integrated process.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000325-000330 ◽  
Author(s):  
Wei Zhao ◽  
Mark Nakamoto ◽  
Karthikeyan Dhandapani ◽  
Brian Henderson ◽  
Ron Lindley ◽  
...  

Abstract Electrical Chip Board Interaction (e-CBI) has emerged as a new risk in chip design as silicon die can directly interact with printed circuit board (PCB) in substrate-less wafer level packaging technology. To assess this risk Qualcomm Technologies, Inc. has converted an existing test chip to wafer level packaging technology. Both the measured data and simulation results show that e-CBI risk is significant and must be carefully managed.


Sign in / Sign up

Export Citation Format

Share Document