Characterization of Inductor Magnetic Cores for Cryogenic Applications

Author(s):  
Shiyuan Yin ◽  
Mahmoud Mehrabankhomartash ◽  
Alfonso J Cruz ◽  
Lukas Graber ◽  
Maryam Saeedifard ◽  
...  
Keyword(s):  
2019 ◽  
Vol 6 (5) ◽  
pp. 182135 ◽  
Author(s):  
Zakia Kanwal ◽  
Muhammad Akram Raza ◽  
Saira Riaz ◽  
Saher Manzoor ◽  
Asima Tayyeb ◽  
...  

Magnetic cores loaded with metallic nanoparticles can be promising nano-carriers for successful drug delivery at infectious sites. We report fabrication, characteristic analysis and in vitro antibacterial performance of nanocomposites comprising cobalt cores (Co-cores) functionalized with a varied concentration of silver nanoparticles (AgNPs). A two-step polyol process synchronized with the transmetalation reduction method was used. Co-cores were synthesized with cobalt acetate, and decoration of AgNPs was carried out with silver acetate. The density of AgNPs was varied by changing the amount of silver content as 0.01, 0.1 and 0.2 g in the synthesis solution. Both AgNPs and Co-cores were spherical having a size range of 30–80 nm and 200 nm to more than 1 µm, respectively, as determined by scanning electron microscopy. The metallic nature and face-centred cubic crystalline phase of prepared nanocomposites were confirmed by X-ray diffraction. Biocompatibility analysis confirmed high cell viability of MCF7 at low concentrations of tested particles. The antibacterial performance of nanocomposites (Co@AgNPs) against Escherichia coli and Bacillus subtilis was found to be AgNPs density-dependent, and nanocomposites with the highest AgNPs density exhibited the maximum bactericidal efficacy. We therefore propose that Co@AgNPs as effective drug containers for various biomedical applications.


2014 ◽  
Vol 1082 ◽  
pp. 6-9 ◽  
Author(s):  
Xiu Pei Yang ◽  
Zhi Jing Tan ◽  
Yu Li Fu ◽  
Gu Li ◽  
Hua Xu

A new kind of surface-functionalized magnetic nanoparticles was fabricated by surface modification of ferroferric oxide with monolayer-protected gold nanoparticles. Ferroferric oxide nanoparticles were firstly synthesized by co-precipitating Fe2+ and Fe3+ ions in base solution, and then coated with a layer of 3-aminopropyltriethoxysilane by silanization reaction. Gold nanoparticles were surface-attached with 2-mercapto-4-methyl-5-thiazoleacetic acid which were subsequently linked to the modified ferroferric oxide nanoparticles to produce Au/Fe3O4 composite materials. The outer layer of ligand (2-mercapto-4-methyl-5-thiazoleacetic acid) on Au/Fe3O4 can function as binding sites for drugs and biomolecules, whereas the innermost magnetic cores are able to respond to an externally applied magnetic field. The as-synthesized Au/Fe3O4 nanocomposite is superparamagnetic (31.4 emu/g), thus rendering it potentially applicable in magnetic drug delivery and bioseparation.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2278 ◽  
Author(s):  
Mikel Osinalde ◽  
Pablo Infante ◽  
Lurdes Domínguez ◽  
Juan Blanco ◽  
Alexander Chizhik ◽  
...  

We report on the structural and magnetic characterization of two nanocrystalline Finemet-type magnetic cores. The nanocrystalline structure developed after annealing the amorphous precursor alloy at 550 °C for 30 and 60 min of annealing time. Structural analysis carried out by means of X-ray diffraction providing useful information on the grain size mean and partial volume of the nanocrystalline phase. The magnetic characterization was focused mainly in the Rayleigh region which, influenced by the intergranular coupling, was found to be more efficient in the sample treated for a longer time with a finer nanocrystalline structure.


2019 ◽  
Vol 29 (5) ◽  
pp. 1-6 ◽  
Author(s):  
Xiaoze Pei ◽  
Alexander C. Smith ◽  
Lode Vandenbossche ◽  
Jan Rens

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document