scholarly journals The Impact of MQTT-based Sensor Network Architecture on Delivery Delay Time

Author(s):  
Oleksandr Kovalchuk ◽  
Yuri Gordienko ◽  
Sergii Stirenko
2015 ◽  
Vol 15 (03n04) ◽  
pp. 1540003
Author(s):  
XIAO-OU SONG ◽  
ZONG-QIANG LI

The routing information is hard to maintain and the energy is limited in highly dynamic wireless sensor network. To solve these problems, energy-saving geographic routing (ESGR) is proposed, which does not maintain the network topology and can save energy. A node broadcast its position information to its neighboring nodes before transmitting data. The neighboring nodes compute the position of the virtual relay node using the data transmitter position, the base station position and the energy consumption for circuits and propagation. The neighboring nodes determine whether to become the relay node through competition based on its position, the destination position and the virtual relay node position. The neighboring nodes compute the delay time distributedly according to the competition strategy. The neighboring node with the shortest delay time can respond to the data sender first and become the sole relay node. The handshake mechanism efficiently prevents the collision among the neighboring nodes during competition, which is of high communication efficiency. When a routing hole is found, the relay region is changed and an approaching destination relay strategy is adopted, which reduces the impact of routing holes. The simulation shows that the proposed algorithm is better than BLR, because of the lower energy consumption and lower packet loss ratio. The ESGR algorithm is more appropriate for highly dynamic wireless network.


2014 ◽  
Vol 628 ◽  
pp. 218-224 ◽  
Author(s):  
Konstantinos Oikonomou ◽  
George Koufoudakis ◽  
Eleni Kavvadia ◽  
Vassilios Chrissikopoulos

Wireless sensor networks can be beneficial for monitoring ambient vibrations in historical buildings where the installation of traditionally wired system may be either difficult due to wiring difficulties or forbidden due to prohibitive legislation. In this paper, a novel wireless sensor network architecture is presented that is focusing on efficiently monitoring ambient vibrations in historical buildings. Traditional wired monitoring technologies are often difficult to be installed in historical buildings either to high costs for installing the wires or to prohibitive legislations. Employing a wireless system could be beneficial. However, as there is no wireless system of high resolution available in the market, an innovative network architecture is proposed that efficiently combines the benefits of both the wired and wireless systems. The problem of synchronization that this novel architecture introduces, is also discussed in this paper along with a possible solution.


2014 ◽  
Vol 28 (05) ◽  
pp. 1450038 ◽  
Author(s):  
MAHDI VADIZADEH ◽  
MORTEZA FATHIPOUR ◽  
GHAFAR DARVISH

One of the main shortcomings in a field effect diode (FED) is its scaling. Use of an oxide layer in the channel is proposed to enhance the control of the gate on the channel carriers. This is the so-called silicon on raised insulator FED (SORI-FFD) structure. The Shockley–Read–Hall (SRH) mechanism is one of the main components of leakage current in FED devices. The potential induced by the gates in the OFF-state of a SORI-FFD, is larger than that induced by the gates of a regular FED. This reduces, SRH recombination rate. Hence, OFF-state characteristics of the SORI-FED device improves. We evaluate the impact of band-to-band tunneling (BTBT) on the electrical characteristics of Modified FED (M-FED).We show that for channel lengths of 35 nm and lower this device does not turn off. While, the proposed structure makes device channel length scaling possible down to 15 nm. We will also compare electrical characteristics of SORI-FED and M-FED using three metrics: gate delay time versus channel length, gate delay time versus I ON /I OFF ratio and energy-delay product versus channel length. Benchmarking results show the proposed FED structure provides improvement in I ON /I OFF ratio and holds promise for future logic transistor applications.


Smart Dust ◽  
2006 ◽  
pp. 8-1-8-19 ◽  
Author(s):  
Jessica Feng ◽  
Farinaz Koushanfar ◽  
Miodrag Potkonjak

Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 114
Author(s):  
Jiří Bílek ◽  
Ondřej Bílek ◽  
Petr Maršolek ◽  
Pavel Buček

Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM).


2019 ◽  
Vol 485 (3) ◽  
pp. 361-365
Author(s):  
A. A. Spivak ◽  
S. A. Riabova

Based on the Chelyabinsk (February 13, 2013) and Lipetsk (June 21, 2018) events, disturbances in the Earth's geomagnetic field, which were induced by the fall of these meteorites, were studied. Based on the data provided by geomagnetic observatories of the INTERMAGNET network and the mid-latitude Mikhnevo geophysical observatory (IDG RAS), it was established that the fall of meteorites through the Earth's atmosphere, in general, induces geomagnetic disturbances of up to 5 nT at distances up to 2700 km from the impact point of a cosmic body; the maximum effect is reached with a delay time ranging from ~5 to ~10 min, and the duration of the period of the induced geomagnetic field disturbances varies from ~5 to ~20 min. The estimation dependencies of the amplitude and duration of induced geomagnetic disturbances from a distance from the meteorite impact points are proposed.


2022 ◽  
Author(s):  
K. Sakthisudhan ◽  
P. Sivakamasundari ◽  
M. Revathi ◽  
R. Shamini ◽  
K. Paul Joshua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document