Analyses of physical characteristics of vegetable oils as an alternative source to mineral oil-based dielectric fluid

Author(s):  
Md. Amanullah ◽  
S.M. Islam ◽  
S. Chami ◽  
G. Ienco
Author(s):  
Anup Darshan ◽  
UmaMaheshwera Reddy Paturi ◽  
Narala Suresh Kumar Reddy ◽  
Srinivasa Prakash Regalla

Now a days for machining operations apart from good tribological properties, the lubricant is also expected to be non-hazardous and non-polluting. When considering the ecological and environmental aspects in machining processes, the use of biodegradable oil can be an alternative source of lubricant due to its positive impact to employee health and environmental pollution. In this regard, our research work uses vegetable based cutting fluids developed from canola and sunflower oil, in an attempt to provide an eco-friendly environment. Experiments are carried out on a pin-on-disc tribometer with tungsten carbide (WC) pin against AISI 4340 steel disc for different sliding times under different environments, thus simulating the machining environment. The tribological properties, wear and friction of vegetable based oils were comparatively investigated with a commercially available mineral oil. Wear tracks and roughness profiles of test specimens were compared by using optical microscope and profilometer respectively. Results indicated that vegetable based canola oil demonstrated excellent tribological properties compared to that of commercial mineral oil.


1999 ◽  
Vol 58 (2) ◽  
pp. 377-383 ◽  
Author(s):  
J. R. Sargent ◽  
A. G. J. Tacon

The projected stagnation in the catch from global fisheries and the continuing expansion of aquaculture is considered against the background that fishmeal and fish oil are major feed stocks for farmed salmon and trout, and also for marine fish. The dietary requirement of these farmed fish for high-quality protein, rich in essential amino acids, can be met by sources other than fishmeal. However, the highly-polyunsaturated fatty acids eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) present in high concentrations in fish oil are essential dietary constituents for marine fish and highly-desirable dietary constituents for salmonids. Currently, there is no feasible alternative source to fish oil for these nutrients in fish feeds. Vegetable oils rich in linoleic acid (18:2n-6) can partially substitute for 20:5n-3 and 22:6n-3 in salmonid and marinefish feeds. However, this is nutritionally undesirable for human nutrition because the healthpromoting effects of fish-derived 20:5n-3 and 22:6n-3 reflect a very high intake of 18:2n-6 relative to linolenic acid (18:3n-3) in Western diets. If partial replacement of fish oils in fish feeds with vegetable oils becomes necessary in future, it is argued that 18:3n-3-rich oils, such as linseed oil, are the oils of choice because they are much more acceptable lrom a human nutritional perspective, especially given the innate ability of freshwater fish, including salmonids, to convert dietary 18:3n-3 to 20:5n-3 and 22:6n-3. In the meantime, a more judicious use of increasinglyexpensive fish oil in aquaculture is recommended. High priorities in the future development of aquaculture are considered to be genetic improvement of farmed fish stocks with enhanced abilities to convert C18 to C20 and C22n-3 polyunsaturated fatty acids, enhanced development of primary production of 20:5n-3 and 22:6n-3 by single-cell marine organisms, and continuing development of new species.


2015 ◽  
Vol 830-831 ◽  
pp. 160-163 ◽  
Author(s):  
K.M. Pranesh Rao ◽  
K. Narayan Prabhu

Quench hardening is a process where an alloy is heated to solutionizing temperature and held for a definite period, and then rapidly cooled in a quenching medium. Selection of quenchant that can yield desired properties is essential as it governs heat extraction process during quenching. In the present work, the cooling performance of vegetable oil and mineral-vegetable oil blend quench media was assessed. The vegetable oils used in this work were olive oil, canola oil and rice bran oil. The mineral-vegetable oil blends were prepared by blending 10 and 20 vol. % of rice bran and canola oil in mineral oil. Inconel probe of 12.5mm diameter and 60mm height, instrumented with thermocouples were used to characterize quenchants. The probe was heated to 850°C and quenched in the oil medium. The cooling curves at different locations in the probe were used to study wetting kinematics. Inverse modelling technique was used to estimate spatially dependent metal-quenchant interfacial heat flux. It was found that the vegetable oils exhibited very short vapour blanket stage compared to mineral oil and blends. Faster wetting kinematics obtained with blends resulted in uniform heat transfer compared to that of mineral oil. The temperature distribution in the probe quenched in vegetable oils and blends was more uniform compared to that in mineral oil. It is expected that the parts quenched in vegetable oils and blends would lead to better hardness distribution compared to mineral oils.


2014 ◽  
Vol 606 ◽  
pp. 9-13
Author(s):  
Iman Golshokouh ◽  
Farid Nasir Ani ◽  
Samion Syahrullail

Lubricant oils play essential role in manufacturing processes for reducing friction and wear between contact parts at different speeds. Palm fatty acid distillate (PFAD) is a new source from vegetable oil and has potential as an alternative source of mineral lubricant oils. This study was performed at various speeds (800, 1200, and 1600 rpm) and at a constant load (392N), temperature (75°C), and time (1 h) using a four-ball tribotester. To evaluate the PFAD results, similar experiments were done using hydraulic oil, and the results were compared mutually. The results showed that the anti-friction, anti-wear, viscosity, and flash temperature parameter (FTP) of PFAD were higher than those of hydraulic mineral oil.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Y. M. Shashidhara ◽  
S. R. Jayaram

The friction and wear tests on AISI 1040 are carried out under raw, modified versions of two nonedible vegetable oils Pongam (Pongamia pinnata) and Jatropha (Jatropha curcas) and also commercially available mineral oil using a pin-on-disc tribometer for various sliding distances and loads. A significant drop in friction and wear for AISI 1040 is observed under Pongam and Jatropha raw oil compared to mineral oil, for the complete tested sliding distance and load, increasing the potential of vegetable oil for tribological applications. Stribeck curves are also drawn to understand the regimes of lubrication. Both the vegetable oils showed a clear reduction in the boundary lubrication regimes, leading to an early start of full film lubrication.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Y. M. Shashidhara ◽  
S. R. Jayaram

The raw and modified versions of two nonedible vegetable oils, Pongam (Pogammia pinnata) and Jatropha (Jatropha curcas), and a commercially available branded mineral oil are used as straight cutting fluids for turning AA 6061 to assess cutting forces. Minimum quantity lubrication is utilized for the supply of cutting fluids. Cutting and thrust forces are measured. Cutting power is determined for various cutting speeds, depths of cut, and feed rates. Also, drilling is performed on the material to understand the material removal rate (MRR) under these oils. The performances of vegetable oils are compared to mineral oil. A noticeable reduction in cutting forces is observed under the Jatropha family of oils compared to mineral oil. Further, better material removal rate is seen under both the vegetable oils and their versions compared to under petroleum oil for the range of thrust forces.


2014 ◽  
Vol 13 (4) ◽  
pp. 169-176
Author(s):  
Paweł Mieczkowski

Asphalt pavements in Poland need renovation. One of the main reasons for their destruction (cracks, losses of grains, chippings) is too small amount of bitumen and its hardness, which is the result of aging. In this case, repairs can be performed in hot recycling technology in place. However, this requires changes in the way of heating the pavement and the use of special refreshing additives. The studies indicate that for this purpose you can use various means, both derivatives of petroleum (mineral oil, oil-resin product) and produced from renewable sources (vegetable oils). However, they require the use of additional preparations to help them connect with old bitumen and increase the compatibility of mixtures. The study of base bitumen and asphalt mixtures suggests that such a role may meet improving adhesion additives, wherein the efficiency of the process should be improved, especially in the case of vegetable and mineral oils.


Author(s):  
Omokhafe James Tola ◽  
Adamu Murtala Zungeru ◽  
F.O. Usifo ◽  
Ambafi James Garba

The world’s energy requirement has been dominated by petroleum oil resources for years in many applications, especially in the area of electricity generation and utilization. Mineral oil application in power system equipment can be potentially hazardous to the environment, especially when there are incidents of transformer explosion, which caused spillages of oil to the soils or water streams and thereby pollute the surrounding environments. This paper is aimed at finding a substitute for the use of mineral oil as transformer oil. Experiments on breakdown voltages, flash points, pour points, viscosities, densities and insulation resistances on conventional mineral oil and some selected vegetable oils were conducted, analyzed and compared to the internationally accepted standards, ASTM (America Standard Test of Material). Rubber seed oil, Palm oil, Mellon oil, Ground oil and Palm kernel oil were found to have good electrical, chemical and thermal properties which the transformer oil has.


Sign in / Sign up

Export Citation Format

Share Document