A Comparative Study of Tribological Behavior of Steel Sliding Against WC Under Mineral and Biodegradable Oil Lubrication

Author(s):  
Anup Darshan ◽  
UmaMaheshwera Reddy Paturi ◽  
Narala Suresh Kumar Reddy ◽  
Srinivasa Prakash Regalla

Now a days for machining operations apart from good tribological properties, the lubricant is also expected to be non-hazardous and non-polluting. When considering the ecological and environmental aspects in machining processes, the use of biodegradable oil can be an alternative source of lubricant due to its positive impact to employee health and environmental pollution. In this regard, our research work uses vegetable based cutting fluids developed from canola and sunflower oil, in an attempt to provide an eco-friendly environment. Experiments are carried out on a pin-on-disc tribometer with tungsten carbide (WC) pin against AISI 4340 steel disc for different sliding times under different environments, thus simulating the machining environment. The tribological properties, wear and friction of vegetable based oils were comparatively investigated with a commercially available mineral oil. Wear tracks and roughness profiles of test specimens were compared by using optical microscope and profilometer respectively. Results indicated that vegetable based canola oil demonstrated excellent tribological properties compared to that of commercial mineral oil.

Tribologia ◽  
2018 ◽  
Vol 277 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Wojciech PAWLAK ◽  
Wojciech WIELEBA ◽  
Janusz KLUCZYŃSKI ◽  
Lucjan ŚNIEŻEK

The article presents the results of studies on the influence of the addition of graphite to a PLA filament on linear wear and the coefficient of friction. A cylinder of 8 millimetre diameter manufactured in Fused Filament Fabrication process, popularly called 3D printing was used as a specimen. Studies were conducted on pin-on-disc testing machine, in which the cylinders mentioned above were paired with a steel disc – the counter-specimen. Specimens used in research were enriched by 5%, 10%, 20%, and 30% of graphite in comparison to the base filament – Natural PLA, which were not enriched with any additions that could improve its tribological properties. The experiment was conducted as a preliminary research. The gained results create a basis to select the optimal composition of additions to the PLA to create a filament with better tribological properties.


2016 ◽  
Vol 852 ◽  
pp. 391-396 ◽  
Author(s):  
Pervaz Ahmed Mouda ◽  
Abdul Azeez ◽  
Siddhi Jailani Hydershah

In this study, the effect of Shallow Cryogenic Treatment (SCT) on the wear behavior of copper beryllium alloy was investigated. The material is subjected to shallow cryogenic treatment to – 80 °C and wear study was conducted on a pin on disc apparatus. The Shallow Cryogenic treated and untreated copper beryllium alloy pins were used against hardened AISI 4140 steel disc. The micro-structural examination was carried out using optical microscope. The hardness was measured using Rockwell hardness tester. The wear track was studied using optical microscope. Microstructure study indicated that the grains of shallow cryogenic treated samples are finer than that of untreated sample. Hardness of the cryogenic treated sample is higher than that of the untreated sample. The wear resistance of cryogenic treated copper beryllium alloy has improved compared with untreated sample.


2019 ◽  
Vol 969 ◽  
pp. 361-366
Author(s):  
Rajendara Rao Krishnaji Rao Vittel Rao ◽  
Kondaiah Gudimetla ◽  
Mariappan Senthil Kumar ◽  
S. Ramesh Kumar ◽  
Perumal Venkatachalam

The goal of this research work is to study the role of equal channel angular pressing on consolidation behavior of machined chips of CP Al through ECAP. The chips are collected by orthogonal cutting with cutting edge angle 75° and depth of cut 0.2 mm. The ECAP die with Φ = 90° (channel angle) and Ψ = 20° (corner angle) is used for consolidation of machined chips. The consolidation is done by pre-heating the chips at 200°C upto four passes through processing route BC. The maximum density of 99% and hardness of 94 HV was obtained after 4 ECAP passes. Tribological properties is evaluated by Pin-on-disc dry wear testing for three different loads at a constant sliding speed 750 RPM and distance of 5 kms. Chip consolidated CP Al is inferior in wear resistance with as-received CP Al owed to localised debonding of chips with the sliding disc.


2012 ◽  
Vol 527 ◽  
pp. 217-222 ◽  
Author(s):  
Andrzej Dzierwa ◽  
Pawel Pawlus ◽  
Wieslaw Zelasko ◽  
Rafal Reizer

Wear tests were conducted using a pin-on-disc tester. In the experiment, a steel disc of hardness 40 HRC was put in contact with a steel pin of hardness 64 HRC with spherical end. Disc samples were prepared in order to obtain very similar values of the Sq parameter of one-process and two-process isotropic surfaces. Height of one–process disc surfaces, characterized by the Sq parameter was in the range 0.5 – 6 µm, but of two-process textures 1- 4.5 µm. Dry and lubricated tests, using different contact conditions were carried out. During testing, the friction force was monitored as a function of time. Wear of disc was measured after the test using white light interferometer. Tests under boundary lubrication condition were done using L-AN 46 oil.


Author(s):  
F. F. Yusubov

In this study, friction and wear properties of friction composite materials which is developed by powder metallurgy methods was examined.The technological sequence such as grinding, dry mixing, pressing and sintering wereused in the manufacturing of materials. The tribological properties of the obtained specimens were studied on a vertical machine MMW-1 using the «pin-on-disc» mechanism. The optical microscope Amscope was used to analyze the wear surfaces.


Tribologia ◽  
2019 ◽  
Vol 283 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Wojciech PAWLAK ◽  
Wojciech WIELEBA ◽  
Roman WRÓBLEWSKI

This article presents the results of studies on the tribological properties of linear wear and kinetic friction of polylactide processed by 3D printing (FFF) and injection moulding. Research was conducted on a pin on disc apparatus, and the test specimens used were polylactide cylinders with the counter specimen of C45 steel disc. Research was planned and executed with the planned experiment method for two variables: velocity of the counter specimen and pressure. The range of specified values was in the following sections: p = 0.2;0.6 MPa and v m s = 0.2;1.0 . The conducted experiment had a target of defining the influence of a somewhat new method of 3D printing on the tribological properties of materials that might find application in prototyping plain bearings.


Lubricants ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Ahmed Nabhan ◽  
Ahmed Rashed ◽  
Nouby M. Ghazaly ◽  
Jamil Abdo ◽  
M. Danish Haneef

The tribological properties of Lithium grease specimens with different concentrations of Al2O3 nanoparticles were investigated using a pin on disc apparatus under different sliding speeds and normal loads. Results showed that Al2O3 nanoparticles enhanced the tribological properties of lithium grease and reduced the COF and wear scar width by approximately 57.9% and 47.5% respectively.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Dedison Gasni ◽  
KM Abdul Razak ◽  
Ahmad Ridwan ◽  
Muhammad Arif

Penelitian ini bertujuan untuk mengetahui efek dari penambahan minyak kelapa dan sawit terhadap sifat fisik dan tribologi pelumas SAE 40. Vegetabel oil, seperti; minyak kelapa dan sawit, memiliki nilai viskositas indek yang tinggi dan sifat pelumasan yang baik terutama didaerah boundary lubrication jika dibandingkan dengan mineral oil (SAE 40). Hal ini disebabkan karena vegetabel oil memiliki kandungan fatty acids yang tidak dimiliki oleh mineral oil. Keunggulan lain dari minyak kelapa dan sawit adanya sifat yang ramah lingkungan karena mudah terurai di alam dan dapat diperbaharui. Pada penelitian ini sifat yang baik dari minyak kelapa dan sawit ini akan dimanfaatkan sebagai zat aditif pada minyak pelumas SAE 40. Pengujian dilakukan terhadap sifat fisik dan tribology dengan penambahan 5%, 10%, 15%, dan 20% berat dari minyak kelapa dan sawit ke dalam minyak pelumas SAE 40. Pengujian sifat fisik terdiri dari pengukuran viskositas pada temperatur 400C dan 1000C dan viskositas index. Pengujian sifat tribologi untuk menentukan keausan dan koefisien gesek berdasarkan ASTM G99 dengan menggunakan alat uji pin on disk. Dari hasil pengujian diperoleh bahwa dengan penambahan minyak kelapa dan sawit kedalam minyak pelumas SAE 40 terjadi peningkatan viskositas indeks. Peningkatan viskositas indeks sebanyak  17% dengan penambahan 20% minyak sawit. Terjadi perubahan sifat tribologi dengan penambahan minyak sawit, berupa penurunan keausan dan nilai koefisien gesek dibandingkan dengan penambahan minyak kelapa. This study aims to determine the effect of coconut and palm oils as additives to physical and tribological properties of SAE 40 lubricating oil . Vegetable oils, such as; coconut oil and palm oil, have high viscosity index and good lubrication properties, especially in boundary lubrication compared to mineral oil. This is due to vegetable oil having fatty acids that are not owned by mineral oil. The advantages of coconut oil and palm oil are environmentally friendly properties because they are biodegradable and renewable. In this study, the good properties of coconut and palm oils will be used as additives in SAE 40 lubricating oil. Tests are carried out on the physical and tribological properties with the addition of 5%, 10%, 15%, and 20% by weight of coconut and palm oils into SAE 40 lubricating oil. Physical properties testing consists of measuring viscosity at temperatures of 400C and 1000C and viscosity index. The tribological test is to determine wear and coefficient of friction based on ASTM G99 using a pin on disc test equipment. From the test results,  it was found that coconut and palm oils as additives into SAE 40 lubricating oil could increase in viscosity index. The increase of  the viscosity index was 17% by adding 20% of palm oil. There was a change of tribological properties in the form of decreasing on the wear and the coefficient of friction with the addition of palm oil compare to addition of coconut oil.


Author(s):  
Krzysztof Nadolny ◽  
Wojciech Kapłonek ◽  
Marzena Sutowska ◽  
Paweł Sutowski ◽  
Piotr Myśliński ◽  
...  

AbstractRaw pine wood processing and especially its mechanical processing constitute a significant share among technological operations leading to obtaining a finished product. Stable implementation of machining operations, ensuring long-term repeatable processing results depends on many factors, such as quality and invariability of raw material, technical condition of technological equipment, adopted parameters of work, qualifications and experience of operators, as well as preparation and properties of the machining tools used. It seems that the greatest potential in the search for opportunities to increase the efficiency of machining operations has the modification of machining tools used in it. This paper presents the results of research work aimed at determining how the life of cutting tools used in planing operations of wet pine wood is affected by the application of chromium aluminum nitride (AlCrN) coating to planar industrial planing knives in the process of physical vapour deposition. For this purpose operational tests were carried out under production conditions in a medium-sized wood processing company. The study compares the effective working time, rounding radius, the profile along the knife (size of worn edge displacement, wear area of the cutting edge), selected texture parameters of the planar industrial planing knife rake face and visual analyses of cutting edge condition of AlCrN-coated planar knives and unmodified ones. The obtained experimental results showed the possibility of increasing the life of AlCrN-coated knives up to 154% compared to the results obtained with uncoated ones. The proposed modification of the operational features of the knives does not involve any changes in the technological process of planing, does not require any interference with the machining station nor its parameters, therefore enabling rapid and easy implementation into industrial practice.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Aswathi A. Narayanan ◽  
R. S. Sudheesh

Hybrid PTFE/epoxy composites are widely used as materials for self-lubricating spherical bearing which are used in a high-temperature environment. In the present work, zirconium diboride (ZrB2) particles are incorporated to enhance high-temperature tribological properties of PTFE/epoxy composites. Pin on disc experiment is conducted with the aid of design of experiments (DOE) using central composite-response surface methodology (RSM). Under a load of 40 N and 1.25 m/s sliding speed, the optimum content 5.95 vol% of PTFE and 5.05 vol% of ZrB2, yields an ultralow coefficient of friction (COF) in conjunction with a low wear rate of the composite. The addition of ultra-high-temperature ceramic ZrB2 particles and solid lubricant PTFE is found to enhance the thermal conductivity and improve the heat transfer thereby reducing contact temperature. The use of optimum composition of the composite is capable of reducing the wear rate and high local temperature due to friction, implying its potential use as a self-lubricating spherical bearing liner material.


Sign in / Sign up

Export Citation Format

Share Document