Design of a multifunctional small digital integrated circuit (IC) using 180nm CMOS Technology

Author(s):  
Raviraj Singh ◽  
Rajesh Khatri ◽  
R.C. Gurjar
2019 ◽  
Vol 2019 (1) ◽  
pp. 000438-000443 ◽  
Author(s):  
Joseph Meyer ◽  
Reza Moghimi ◽  
Noah Sturcken

Abstract The generational scaling of CMOS device geometries, as predicted by Moore's law, has significantly outpaced advances in CMOS package and power electronics technology. The conduction of power to a high-performance integrated circuit (IC) die typically requires close to 50% of package and IC I/O and is increasing with trends towards lower supply voltages and higher power density that occur in advanced CMOS nodes. The disparity in scaling of logic, package, and I/O technology has created a significant bottleneck that has become a dominant constraint on computational performance. By performing power conversion and voltage regulation in-package, this limitation can be mitigated. Integration of thin-film ferromagnetic inductors with CMOS technology enables single-chip power converters to be co-packaged with processors, high bandwidth memory (HBM), and/or other modules. This paper highlights the advantages of fully integrated package voltage regulators (PVRs), which include: reducing package I/O allocated for power, eliminating the need for upstream power-conversion stages, and improving transient response. These benefits substantially reduce the size, weight, and power of modern electronic systems.


2019 ◽  
Vol 3 (4) ◽  
pp. 382-396 ◽  
Author(s):  
Ioannis Karageorgos ◽  
Mehmet M. Isgenc ◽  
Samuel Pagliarini ◽  
Larry Pileggi

AbstractIn today’s globalized integrated circuit (IC) ecosystem, untrusted foundries are often procured to build critical systems since they offer state-of-the-art silicon with the best performance available. On the other hand, ICs that originate from trusted fabrication cannot match the same performance level since trusted fabrication is often available on legacy nodes. Split-Chip is a dual-IC approach that leverages the performance of an untrusted IC and combines it with the guaranties of a trusted IC. In this paper, we provide a framework for chip-to-chip authentication that can further improve a Split-Chip system by protecting it from attacks that are unique to Split-Chip. A hardware implementation that utilizes an SRAM-based PUF as an identifier and public key cryptography for handshake is discussed. Circuit characteristics are provided, where the trusted IC is designed in a 28-nm CMOS technology and the untrusted IC is designed in an also commercial 16-nm CMOS technology. Most importantly, our solution does not require a processor for performing any of the handshake or cryptography tasks, thus being not susceptible to software vulnerabilities and exploits.


1979 ◽  
Vol 3 (6) ◽  
pp. 371-375 ◽  
Author(s):  
D. J. McLean ◽  
M. Beard ◽  
A. Bos

The Culgoora radioheliograph was designed in the early 1960s and commissioned in 1967. Since then there have been dramatic increases in the speed and versatility of digital integrated-circuit devices, and also a marked fall in their cost. It is now possible to replace the original signal processing electronics with equipment, based on modern digital technology, which will significantly enhance the performance of this radio telescope for solar and cosmic radio observations at metre wavelengths.


Sign in / Sign up

Export Citation Format

Share Document