Research of reflow soldering on Al-SiC composite material and thick film ceramic substrates

Author(s):  
Ningning Wang ◽  
Binbin Zhang ◽  
Rong An ◽  
Meng Yang
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4919
Author(s):  
Marcin Lebioda ◽  
Ryszard Pawlak ◽  
Jacek Rymaszewski

Microjoining technologies are crucial for producing reliable electrical connections in modern microelectronic and optoelectronic devices, as well as for the assembly of electronic circuits, sensors, and batteries. However, the production of miniature sensors presents particular difficulties, due to their non-standard designs, unique functionality and applications in various environments. One of the main challenges relates to the fact that common methods such as reflow soldering or wave soldering cannot be applied to making joints to the materials used for the sensing layers (oxides, polymers, graphene, metallic layers) or to the thin metallic layers that act as contact pads. This problem applies especially to sensors designed to work at cryogenic temperatures. In this paper, we demonstrate a new method for the dynamic soldering of outer leads in the form of metallic strips made from thin metallic layers on ceramic substrates. These leads can be used as contact pads in sensors working in a wide temperature range. The joints produced using our method show excellent electrical, thermal, and mechanical properties in the temperature range of 15–300 K.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000377-000384
Author(s):  
Dustin Büttner ◽  
Klaus Krüger

Within the last decade, large efforts were made to implement digital printing as a production method for printed electronics. Especially in production of thick-film electronics, innovation is pushed forward to overcome the lacks of established screen-printing regarding flexibility and tooling. Besides the numerous approaches in using ink-jet printing for printed electronics, researchers at Helmut Schmidt University already showed huge progress in applying electrophotography (“laser printing”) as a method to print conductive silver lines in order to form a conductive layout for thick-film circuits. Electrophotography is a solvent-free method, able to directly print silver toner onto ceramic substrates, forming a conductive line after firing. Benefits are high speeds and flexibility and a huge potential regarding precision. Now, after the feasibility of the method was proven and even functional conductive layouts like RFID coils were printed, the next steps have to be taken towards developing electrophotography to an applicable method in a thick-film production process. Thus, this paper describes the efforts in improving the method's performance. Different kinds of silver particles are tested towards their possibility of forming a silver toner. The resulting silver lines are examined regarding conductivity and printing precision. Also, surface treatment of substrates is considered as a method to reduce the number of required print cycles. Corresponding tests are performed. Furthermore, different firing profiles are tested towards their influence onto the resulting silver lines. Combining the results of these examinations, the performance of conductive silver lines could be improved significantly.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000053-000057
Author(s):  
Jaroslaw Kita ◽  
Sven Wiegärtner ◽  
Alistair Prince ◽  
Peter Weigand ◽  
Ralf Moos

Abstract The application of thermocouples as temperature sensors has been well known and has already been established for many years. However, for classical thick-film technology using screen-printing and firing, no standardized solutions exist. The here-presented newly developed PtRh thick-film compositions (90% Pt,10% Rh) allows to construct thick-film type S thermocouples (Pt/PtRh), following the IEC temperature characteristics. They can be fired in air, and therefore can be easily integrated into existing thick-film components and devices. In an earlier study, the new Pt-Rh composition was successfully tested on alumina substrates. Their electrical characteristics is equal with classical wire type S thermocouples. This study continues the investigations of thick-film thermocouples. We tested the newly developed pastes for high temperature applications on alumina substrates and evaluated the application of the new screen-printable type S thermocouples on LTCC ceramics. Three possible configurations were investigated: deposited on already fired LTCC substrates (post-fired), screen-printed and co-fired with LTCC tapes on the top surface as well as as buried structures. The paper presents the results of our evaluation and discusses further possible applications.


2000 ◽  
Vol 625 ◽  
Author(s):  
J.M. Fitz-Gerald ◽  
D.B. Chrisey ◽  
A. Piqu ◽  
R.C.Y. Auyeung ◽  
R. Mohdi ◽  
...  

AbstractWe demonstrate a novel laser-based approach to perform rapid prototyping of active and passive circuit elements called MAPLE DW. This technique is similar in its implementation to laser induced forward transfer (LIFT), but different in terms of the fundamental transfer mechanism and materials used. In MAPLE DW, a focused pulsed laser beam interacts with a composite material on a laser transparent support transferring the composite material to the acceptor substrate. This process enables the formation of adherent and uniform coatings at room temperature and atmospheric pressure with minimal post-deposition modification required, i.e., ≤ 400°C thermal processing. The firing of the laser and the work piece (substrate) motion is computer automated and synchronized using software designs from an electromagnetic modeling program validating that this technique is fully CAD/CAM compatible. The final properties of the deposited materials depend on the deposition conditions and the materials used, but when optimized, the properties are competitive with other thick film techniques such as screenprinting. Specific electrical results for conductors are < 5X the resistivity of bulk Ag, for BaTiO3/TiO2 composite capacitors the k can be tuned between 4 and 100 and losses are < 1-4%, and for polymer thick film resistors the compositions cover 4 orders of magnitude in sheet resistivity. The surface profiles and fracture cross-section micrographs of the materials and devices deposited show that they are very uniform, densely packed and have minimum resolutions of ∼10 µm. A discussion of how these results were obtained, the materials used, and methods to improve them will be given.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000073-000078
Author(s):  
Paul Gundel ◽  
Anton Miric ◽  
Kai Herbst ◽  
Melanie Bawohl ◽  
Jessica Reitz ◽  
...  

Abstract So far Direct Bonded Copper (DBC) substrates have been the standard for power electronics. They provide excellent electrical and thermal conductivity at low cost. Weaknesses of DBC technology are the inevitable warpage and the relatively low reliability under thermal cycling. The low reliability poses a significant hurdle in particular for automotive applications with high lifetime requirements. Thick Print Copper (TPC) substrates with low warpage and excellent reliability overcome these weaknesses, but also provide a reduced conductivity at a higher cost. We present two thick-film/DBC hybrid technologies which combine the best properties of DBC and TPC: excellent conductivity, low cost, reduced warpage and excellent reliability.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000294-000296 ◽  
Author(s):  
R. Scheubeck ◽  
W. Gruebl ◽  
A. Pletsch ◽  
U. Schiller ◽  
R. Wurm

The market for automatic transmissions continues to grow. In addition to what originally attracted interest to the product – enhanced driver convenience – the prospect of greater fuel efficiency is now a further factor in their favor. Continental has been offering transmission control units (TCU) since 1982, starting with those for simple three-gear conventional automatic transmissions, followed by all-wheel applications in 1985, CVT applications in 1999, truck applications in 2000, and arriving at the double clutch transmissions in widespread use today. At present Continental Business Unit Transmission is technology leader worldwide in the market for transmission controls for the full spectrum of automatic drives. Continental TCU's are divided in “Stand alone”, “Attached to” and “Integrated” TCU's. However the “Stand alone” and “Attached to” TCU's are normally equipped with standard PCB substrates. Because of the highest requirements in temperature, vibration and typical medias (aggressive Transmission oils – liquid & gaseous), standard organic substrates cannot be used, ceramic substrates are typically preferred. A common technology in that case is the ceramic based thick film technology, where conductor and resistor pastes are printed on the surface of a ceramic alumina substrate by using a common screen printing process. The printed layers (Au, Ag, AgPd, AgPt) have to be dried and thermally sintered after appliance. The increasing functionality of the TCU's and the increasing requirements due to miniaturization inherently show that thickfilm technology, as applied in a standard printing process, is not possible to reach those requirements. Continental has developed a concept to realize higher miniaturization of the circuit boards. Therefore a innovative laser structuring process has been installed for the newest generations of TCU's in cooperation with a leading machine and system manufacturer. By using the laser structuring of conductor lines it allows Continental to increase the connection density by keeping the substrate size unchanged. Typical common printing pitches in thickfilm production are 300μm, however pitches of 100μm are possible by laser structuring in mass production.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000260-000267 ◽  
Author(s):  
Zhenzhen Shen ◽  
Kun Fang ◽  
Mike Hamilton ◽  
R. Wayne Johnson ◽  
Erica Snipes ◽  
...  

Conventional SAC lead-free solders have a melting point of 217°C to 227°C, limiting their suitability for applications at 200°C. AgBiXTM solder has potential for 200°C applications because of its ~260°C solidus temperature. BiAgX paste has been used to assemble SiC test die to ceramic substrates with direct bond copper (DBC), reactive brazed CuMo, thick film Au, thick film PtAu, thick film PdAg and thick film Ag. Surface mount chip resistors have also been attached to thick film metallized substrates. The assembly process and initial shear strength test results are presented. Assemblies have also been subjected to thermal testing: thermal cycling (−55°C to +195°C) and high temperature (200°C) storage. The shear strength of these assemblies after thermal testing are presented and compared to initial results.


Sign in / Sign up

Export Citation Format

Share Document