Epitaxial thin films of half-metallic CrO2 deposited on oxidized Si substrates by PLD using Cr2O3 target

Author(s):  
Sudhanshu Dwivedi ◽  
Somnath Biswas
2004 ◽  
Vol 95 (11) ◽  
pp. 6462-6465 ◽  
Author(s):  
J. Y. Son ◽  
S. H. Bang ◽  
J. W. Park ◽  
Y. H. Jang ◽  
J. H. Cho

2003 ◽  
Vol 786 ◽  
Author(s):  
Takamitsu Higuchi ◽  
Koichi Morozumi ◽  
Setsuya Iwashita ◽  
Masaya Ishida ◽  
Tatsuya Shimoda

ABSTRACTPseudocubic SrRuO3 (100) epitaxial thin films were fabricated on Si (100) with a YBa2Cu3Ox / CeO2 / YSZ (yttria-stabilized-zirconia) triple buffer layer ∼ 14 nm thick by pulsed laser deposition (PLD). Reflection high-energy electron diffraction (RHEED) and X-ray diffraction (XRD) revealed that the first buffer layer of YSZ (100) was epitaxially grown on naturally oxidized Si (100) substrates with the process condition of PB (base pressure) = 1×10-Torr, PO2 (oxygen partial pressure) = 5×10- Torr, and Ts (substrate temperature) = 700 °C. Higher deposition rate of YSZ in the range of 0 ∼ 0.6 nm/min brought about better crystallinity with a smaller value of a full-width at half maximum (FWHM) in the YSZ (200) rocking curve. Subsequent deposition of CeO2, YBa2Cu3Ox, and SrRuO3 resulted in an SrRuO3 (100) epitaxial thin film exhibiting good crystallinity with FWHM = 1.7° in the SrRuO3 (200) rocking curve.


2015 ◽  
Vol 179 ◽  
pp. 227-233 ◽  
Author(s):  
Adrián Carretero-Genevrier ◽  
Martí Gich ◽  
Laura Picas ◽  
Clément Sanchez ◽  
Juan Rodriguez-Carvajal

Understanding the crystallization of enantiomorphically pure systems can be relevant to diverse fields such as the study of the origins of life or the purification of racemates. Here we report on polycrystalline epitaxial thin films of quartz on Si substrates displaying two distinct types of chiral habits that never coexist in the same film. We combine Atomic Force Microscopy (AFM) analysis and computer-assisted crystallographic calculations to make a detailed study of these habits of quartz. By estimating the surface energies of the observed crystallites we argue that the films are enantiomorphically pure and we briefly outline a possible mechanism to explain the habit and chiral selection in this system.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


Author(s):  
J. L. Batstone ◽  
D.A. Smith

Recrystallization of amorphous NiSi2 involves nucleation and growth processes which can be studied dynamically in the electron microscope. Previous studies have shown thatCoSi2 recrystallises by nucleating spherical caps which then grow with a constant radial velocity. Coalescence results in the formation of hyperbolic grain boundaries. Nucleation of the isostructural NiSi2 results in small, approximately round grains with very rough amorphous/crystal interfaces. In this paper we show that the morphology of the rccrystallizcd film is dramatically affected by variations in the stoichiometry of the amorphous film.Thin films of NiSi2 were prepared by c-bcam deposition of Ni and Si onto Si3N4, windows supported by Si substrates at room temperature. The base pressure prior to deposition was 6 × 107 torr. In order to investigate the effect of stoichiomctry on the recrystallization process, the Ni/Si ratio was varied in the range NiSi1.8-2.4. The composition of the amorphous films was determined by Rutherford Backscattering.


2020 ◽  
Vol 140 (4) ◽  
pp. 186-192
Author(s):  
Shumpei Ogawa ◽  
Tatsuya Kuroda ◽  
Yasuyuki Katou ◽  
Hironori Haga ◽  
Hiroki Ishizaki

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


Sign in / Sign up

Export Citation Format

Share Document