scholarly journals A study of the relationship between support vector machine and Gabriel graph

Author(s):  
Wan Zhang ◽  
Irwin King
2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879916 ◽  
Author(s):  
Kai Chen ◽  
Li Zu ◽  
Li Wang

Ball screw is a mechanical device widely used in mechanical field. The reverse clearance of ball screw will reduce its precision. In order to eliminate the reverse clearance, it is necessary to apply preload to the ball screw. It is very difficult to measure the preload in real time, and the data are large and time-consuming. By using machine learning method to predict and supervise preload, the changing trend of working condition of ball screw can be evaluated in advance, and the working precision of screw is controlled, which has important engineering significance. In this article, the relationship between the preload and the friction torque is obtained through theoretical derivation and experimental verification. Then, the support vector machine is used as a tool to model the friction torque of ball screw with the parameters of material, lubrication, and revolution, and predict the value and trend of preload to complete the supervision and prediction of the preload of the ball screw. By comparing the experimental results, it is proved that the support vector machine is feasible in predicting and supervising the attenuation of the preload of ball screw.


Author(s):  
Jianmin Bian ◽  
Qian Wang ◽  
Siyu Nie ◽  
Hanli Wan ◽  
Juanjuan Wu

Abstract Fluctuations in groundwater depth play an important role and are often overlooked when considering the transport of nitrogen in the unsaturated zone. To evaluate directly the variation of nitrogen transport due to fluctuations in groundwater depth, the prediction model of groundwater depth and nitrogen transport were combined and applied by least squares support vector machine and Hydrus-1D in the western irrigation area of Jilin in China. The calibration and testing results showed the prediction models were reliable. Considering different groundwater depth, the concentration of nitrogen was affected significantly with a groundwater depth of 3.42–1.71 m, while it was not affected with groundwater depth of 5.48–6.47 m. The total leaching loss of nitrogen gradually increased with the continuous decrease of groundwater depth. Furthermore, the limited groundwater depth of 1.7 m was found to reduce the risk of nitrogen pollution. This paper systematically analyzes the relationship between groundwater depth and nitrogen transport to form appropriate agriculture strategies.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Fangfang Wang ◽  
Yerong Zhang ◽  
Huamei Zhang

One of the main challenges in through-wall imaging (TWI) is the presence of the walls, whose returns tend to obscure the target behind the walls and must be considered and computed in the imaging procedure. In this paper, a two-step procedure for the through-wall detection is proposed. Firstly, an effective clutter mitigation method based on singular value decomposition (SVD) is used. It does not require knowledge of the background scene or rely on accurate modeling and estimation of wall parameters. Then, TWI problem is cast as a regression one and solved by means of least-squares support vector machine (LS-SVM). The complex scattering process due to the presence of the walls is automatically included in the nonlinear relationship between the feature vector extracted from the target scattered fields and the position of the target. The relationship is obtained through a training phase using LS-SVM. Simulated results show that the proposed approach is effective. We also analyze the impacts of training samples and signal-to-noise ratio (SNR) on test detection accuracy. Simulated results reveal that the proposed LS-SVM based approach can provide comparative performances in terms of accuracy, convergence, robustness, and generalization in comparison with the support vector machine (SVM) based approach.


2019 ◽  
Vol 12 (2) ◽  
pp. 32-38
Author(s):  
Iin Ernawati

This study was conducted to text-based data mining or often called text mining, classification methods commonly used method Naïve bayes classifier (NBC) and support vector machine (SVM). This classification is emphasized for Indonesian language documents, while the relationship between documents is measured by the probability that can be proven with other classification algorithms. This evident from the conclusion that the probability result Naïve Bayes Classifier (NBC) word “party” at least in the economic document and political. Then the result of the algorithm support vector machine (svm) with the word “price” and “kpk” contains in both economic and politic document.  


2021 ◽  
Vol 29 (2) ◽  
pp. 116-133
Author(s):  
Jin Gi Kim ◽  
Hyun-Tak Lee ◽  
Bong-Gyu Jang

Purpose This paper examines whether the successful bid rate of the OnBid public auction, published by Korea Asset Management Corporation, can identify and forecast the Korea business-cycle expansion and contraction regimes characterized by the OECD reference turning points. We use logistic regression and support vector machine in performing the OECD regime classification and predicting three-month-ahead regime. We find that the OnBid auction rate conveys important information for detecting the coincident and future regimes because this information might be closely related to deleveraging regarding default on debt obligations. This finding suggests that corporate managers and investors could use the auction information to gauge the regime position in their decision-making. This research has an academic significance that reveals the relationship between the auction market and the business-cycle regimes.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shengdi Chen ◽  
Shiwen Zhang ◽  
Yingying Xing ◽  
Jian Lu ◽  
Yichuan Peng ◽  
...  

The purpose of this study is to investigate the impact of the truck proportion on surrogate safety measures to explore the relationship between truck proportion and traffic safety. The relationship between truck proportion and traffic flow parameters was analyzed by correlation and partial correlation analysis, and the value of the 85th percentile speed minus the 15th percentile speed (85%V–15%V) and the speed variation coefficient were selected as surrogate safety measures to explore the impact of truck proportion on traffic status. The k-means algorithm and the support vector machine were employed to evaluate traffic status on a freeway under different truck proportions in different periods. The major results are that the relationship between truck proportion and the value of 85%V–15%V and the speed variation coefficient is consistent in different aggregation periods. With increasing truck proportion, the value of 85%V–15%V, as well as the speed variation coefficient, increases initially and then decreases. In addition, the traffic flow status tends to be dangerous when the truck proportion ranges from 0.4 to 0.6 and when the value of 85%V–15%V and the speed variation coefficient are above 42 km/h and 0.223, respectively. While the truck proportion is from 0.1 to 0.3 and from 0.7 to 0.9, the traffic flow is relatively safe on the condition that the value of 85%V–15%V and the speed variation coefficient were under 42 km/h and 0.223, respectively. Therefore, the relationship between truck proportion and traffic safety could be well revealed by two surrogate safety measures, that is, the value of 85%V–15%V and the speed variation coefficient. In addition, the k-means algorithm and the support vector machine can well reveal the impact of truck proportion on traffic safety in different periods. The findings of this study indicate a need for decreasing the disturbance of mixed traffic and the impact of the truck proportion on traffic safety status.


Author(s):  
Arthur Mourits Rumagit ◽  
Izzat Aulia Akbar ◽  
Mitaku Utsunomiya ◽  
Takamasa Morie ◽  
Tomohiko Igasaki

Many traffic accidents are due to drowsy driving. However, to date, only a few studies have been conducted on the gazing properties related to drowsiness. This study was conducted with the objective of estimating the relationship between gazing properties and drowsiness in three facial expression evaluation (FEE) categories: alert (FEE = 0), lightly drowsy (FEE = 1−2), heavily drowsy (FEE = 3−4). Drowsiness was investigated based on these eye-gazing properties by analyzing the gazing signal utilizing an eye gaze tracker and FEE in a driving simulator environment. The results obtained indicate that gazing properties have significant differences among the three drowsiness conditions, with p < 0.001 in a Kruskal–Wallis test. Furthermore, the overall classification accuracy of the three drowsiness conditions based on gazing properties using a support vector machine was 76.3%. This indicates that our proposed gazing properties can be used to quantitatively assess drowsiness.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Daming Zhang ◽  
Fangjin Sun ◽  
Tiantian Liu

Coal gangue-based geopolymer concrete is an environmentally friendly material made from coal gangue, solid waste from the coal mine. Compressive strength is one of the most important indexes for concretes. Different oxide contents of coal gangue will affect the compressive strength of the geopolymer concrete directly. However, there is little study on the relationship between oxide contents and compressive strength of the geopolymer concrete. Experiments are commonly used methods of determining the compressive strength of concretes, including geopolymer concrete, which is time-consuming and inefficient. Therefore, in the work here, a support vector machine and a modified cuckoo algorithm are utilized to predict the compressive strength of geopolymer concrete. An orthogonal factor is introduced to modify the traditional cuckoo algorithm to update new species and accelerate computation convergence. Then, the modified cuckoo algorithm is employed to optimize the parameters in the support vector machine model. Then, the compressive strength predictive model of coal gangue-based geopolymer concrete is established with oxide content of raw materials as the input and compressive strength as the output of the model. The compressive strength of coal gangue-based geopolymer concrete is predicted with different oxide contents in raw materials, and the effects of different oxide contents and oxide combinations on compressive strength are studied and analyzed. The results show that the support vector machine and the modified cuckoo algorithm are valid and accurate in predicting the compressive strength of geopolymer concrete. And, coal gangue geopolymer concrete compressive strength is significantly affected by oxide contents.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Wan-Lin Hu ◽  
Joran W. Booth ◽  
Tahira Reid

Using electroencephalography (EEG) to predict design outcomes could be used in many applications as it facilitates the correlation of engagement and cognitive workload with ideation effectiveness. It also establishes a basis for the connection between EEG measurements and common constructs in engineering design research. In this paper, we propose a support vector machine (SVM)-based prediction model for design outcomes using EEG metrics and some demographic factors as predictors. We trained and validated the model with more than 100 concepts, and then evaluated the relationship between EEG data and concept-level measures of novelty, quality, and elaboration. The results characterize the combination of engagement and workload that is correlated with good design outcomes. Findings also suggest that EEG technologies can be used to partially replace or augment traditional ideation metrics and to improve the efficacy of ideation research.


Sign in / Sign up

Export Citation Format

Share Document