Static Characterization of High Resolution DAC Based on Over Sampling and Low Resolution ADC

Author(s):  
Domenico Luca Carni ◽  
Domenico Grimaldi
2019 ◽  
Vol 627 ◽  
pp. A67 ◽  
Author(s):  
P. Mollière ◽  
J. P. Wardenier ◽  
R. van Boekel ◽  
Th. Henning ◽  
K. Molaverdikhani ◽  
...  

We present the easy-to-use, publicly available, Python package petitRADTRANS, built for the spectral characterization of exoplanet atmospheres. The code is fast, accurate, and versatile; it can calculate both transmission and emission spectra within a few seconds at low resolution (λ/Δλ = 1000; correlated-k method) and high resolution (λ/Δλ = 106; line-by-line method), using only a few lines of input instruction. The somewhat slower, correlated-k method is used at low resolution because it is more accurate than methods such as opacity sampling. Clouds can be included and treated using wavelength-dependent power law opacities, or by using optical constants of real condensates, specifying either the cloud particle size, or the atmospheric mixing and particle settling strength. Opacities of amorphous or crystalline, spherical or irregularly-shaped cloud particles are available. The line opacity database spans temperatures between 80 and 3000 K, allowing to model fluxes of objects such as terrestrial planets, super-Earths, Neptunes, or hot Jupiters, if their atmospheres are hydrogen-dominated. Higher temperature points and species will be added in the future, allowing to also model the class of ultra hot-Jupiters, with equilibrium temperatures Teq ≳ 2000 K. Radiative transfer results were tested by cross-verifying the low- and high-resolution implementation of petitRADTRANS, and benchmarked with the petitCODE, which itself is also benchmarked to the ATMO and Exo-REM codes. We successfully carried out test retrievals of synthetic JWST emission and transmission spectra (for the hot Jupiter TrES-4b, which has a Teq of ∼1800 K).


2020 ◽  
Author(s):  
Shaktheeshwari Silvaraju ◽  
Nandita Menon ◽  
Huan Fan ◽  
Kevin Lim ◽  
Sandra Kittelmann

ABSTRACTThe ‘lactobacilli’ to date encompass more than 270 closely related species that were recently re-classified into 26 genera. Because of their relevance to industry, there is a need to distinguish between closely related, yet metabolically and regulatory distinct species, e.g., during monitoring of biotechnological processes or screening of samples of unknown composition. Current available methods, such as shotgun metagenomics or rRNA-based amplicon sequencing have significant limitations (high cost, low resolution, etc.). Here, we generated a lactobacilli phylogeny based on phenylalanyl-tRNA synthetase (pheS) genes and, from it, developed a high-resolution taxonomic framework which allows for comprehensive and confident characterization of lactobacilli community diversity and structure at the species-level. This framework is based on a total of 445 pheS gene sequences, including sequences of 277 validly described species and subspecies (out of a total of 283, coverage of 98%). It allows differentiation between 263 lactobacilli species-level clades out of a total of 273 validly described species (including the proposed species L. timonensis) and a further two subspecies. The methodology was validated through next-generation sequencing of mock communities. At a sequencing depth of ∼30,000 sequences, the minimum level of detection was approximately 0.02 pg per μl DNA (equalling approximately 10 genome copies per µl template DNA). The pheS approach along with parallel sequencing of partial 16S rRNA genes revealed a considerable lactobacilli diversity and distinct community structures across a broad range of samples from different environmental niches. This novel complementary approach may be applicable to industry and academia alike.IMPORTANCESpecies within the former genera Lactobacillus and Pediococcus have been studied extensively at the genomic level. To accommodate for their exceptional functional diversity, the over 270 species were recently re-classified into 26 distinct genera. Despite their relevance to both academia and industry, methods that allow detailed exploration of their ecology are still limited by low resolution, high cost or copy number variations. The approach described here makes use of a single copy marker gene which outperforms other markers with regards to species-level resolution and availability of reference sequences (98% coverage). The tool was validated against a mock community and used to address lactobacilli diversity and community structure in various environmental matrices. Such analyses can now be performed at broader scale to assess and monitor lactobacilli community assembly, structure and function at the species (in some cases even at sub-species) level across a wide range of academic and commercial applications.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Shaktheeshwari Silvaraju ◽  
Nandita Menon ◽  
Huan Fan ◽  
Kevin Lim ◽  
Sandra Kittelmann

ABSTRACT The lactobacilli identified to date encompass more than 270 closely related species that were recently reclassified into 26 genera. Because of their relevance to industry, there is a need to distinguish between closely related and yet metabolically and regulatory distinct species, e.g., during monitoring of biotechnological processes or screening of samples of unknown composition. Current available methods, such as shotgun metagenomics or rRNA gene-based amplicon sequencing, have significant limitations (high cost, low resolution, etc.). Here, we generated a phylogeny of lactobacilli based on phenylalanyl-tRNA synthetase (pheS) genes and, from it, developed a high-resolution taxonomic framework which allows for comprehensive and confident characterization of the community diversity and structure of lactobacilli at the species level. This framework is based on a total of 445 pheS gene sequences, including sequences of 276 validly described species and subspecies (of a total of 282, including the proposed L. timonensis species and the reproposed L. zeae species; coverage of 98%), and allows differentiation between 265 species-level clades of lactobacilli and the subspecies of L. sakei. The methodology was validated through next-generation sequencing of mock communities. At a sequencing depth of ∼30,000 sequences, the minimum level of detection was approximately 0.02 pg per μl DNA (equaling approximately 10 genome copies per μl template DNA). The pheS approach, along with parallel sequencing of partial 16S rRNA genes, revealed considerable diversity of lactobacilli and distinct community structures across a broad range of samples from different environmental niches. This novel complementary approach may be applicable to industry and academia alike. IMPORTANCE Species formerly classified within the genera Lactobacillus and Pediococcus have been studied extensively at the genomic level. To accommodate their exceptional functional diversity, the over 270 species were recently reclassified into 26 distinct genera. Despite their relevance to both academia and industry, methods that allow detailed exploration of their ecology are still limited by low resolution, high cost, or copy number variations. The approach described here makes use of a single-copy marker gene which outperforms other markers with regard to species-level resolution and availability of reference sequences (98% coverage). The tool was validated against a mock community and used to address diversity of lactobacilli and community structure in various environmental matrices. Such analyses can now be performed at a broader scale to assess and monitor the assembly, structure, and function of communities of lactobacilli at the species level (and, in some cases, even at the subspecies level) across a wide range of academic and commercial applications.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Author(s):  
H. Takaoka ◽  
M. Tomita ◽  
T. Hayashi

High resolution transmission electron microscopy (HRTEM) is the effective technique for characterization of detailed structure of semiconductor materials. Oxygen is one of the important impurities in semiconductors. Detailed structure of highly oxygen doped silicon has not clearly investigated yet. This report describes detailed structure of highly oxygen doped silicon observed by HRTEM. Both samples prepared by Molecular beam epitaxy (MBE) and ion implantation were observed to investigate effects of oxygen concentration and doping methods to the crystal structure.The observed oxygen doped samples were prepared by MBE method in oxygen environment on (111) substrates. Oxygen concentration was about 1021 atoms/cm3. Another sample was silicon of (100) orientation implanted with oxygen ions at an energy of 180 keV. Oxygen concentration of this sample was about 1020 atoms/cm3 Cross-sectional specimens of (011) orientation were prepared by argon ion thinning and were observed by TEM at an accelerating voltage of 400 kV.


Author(s):  
Margaret L. Sattler ◽  
Michael A. O'Keefe

Multilayered materials have been fabricated with such high perfection that individual layers having two atoms deep are possible. Characterization of the interfaces between these multilayers is achieved by high resolution electron microscopy and Figure 1a shows the cross-section of one type of multilayer. The production of such an image with atomically smooth interfaces depends upon certain factors which are not always reliable. For example, diffusion at the interface may produce complex interlayers which are important to the properties of the multilayers but which are difficult to observe. Similarly, anomalous conditions of imaging or of fabrication may occur which produce images having similar traits as the diffusion case above, e.g., imaging on a tilted/bent multilayer sample (Figure 1b) or deposition upon an unaligned substrate (Figure 1c). It is the purpose of this study to simulate the image of the perfect multilayer interface and to compare with simulated images having these anomalies.


Sign in / Sign up

Export Citation Format

Share Document