Output Characteristics of Class E Amplifier With Nonlinear Shunt Capacitance Versus Supply Voltage

Author(s):  
Tadashi Suetsugu ◽  
Marian K. Kazimierczuk
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4611
Author(s):  
Ivailo Milanov Pandiev

In this paper a simple PSpice (Personal Simulation Program with Integrated Circuit Emphasis) macro-model was developed, and verified for monolithic power operational amplifiers operated with a single-supply voltage. The proposed macro-model is developed using simplification and build-up techniques for macro-modeling of operational amplifiers and simulates the basic static and dynamic characteristics, including input impedance, small-signal frequency responses at various voltage gains, output power versus supply voltage, slew-rate-limiting, voltage limiting, output offset voltage versus supply voltage ripples, and output resistance. Furthermore, the macro-model also takes into account the ground reference voltage in the amplifier at a single power supply voltage. The model is implemented as a hierarchical structure suitable for the PSpice circuit simulation platform. The sub-circuit is built using standard PSpice components and analog behavioral modeling blocks. The accuracy of the model is verified by extracting the model parameters for single-supply power operational amplifier TDA2005 from ST Microelectronics as example. The effectiveness of the model is validated by comparing the simulation results of the electrical parameters with the corresponding measured values obtained by experimental testing of sample circuits. The comparative analysis shows that the relative error of the modeled large-signal parameters is less than 15%. Moreover, an error of 15% is quite acceptable, considering the technological tolerances of the electrical parameters for this type of analog ICs.


Author(s):  
Abdelali El Boutahiri ◽  
Mounir Ouremchi ◽  
Ahmed Rahali ◽  
Mustapha El Alaoui ◽  
Fouad Farah ◽  
...  

<p>In this work a 2 MHz on-off keying (OOK) transmitter/receiver for inductive power and data transmission for biomedical implant system is presented. Inductive link, driven by a Class E power amplifier (PA) is the most PA used to transfer data and power to the internal part of biomedical implant system. Proposed transmitter consists of a digital control oscillator (DCO) and a class E PA which uses OOK modulation to transfer both data and power to a biomedical implant. In proposing OOK transmitter when the transmitter sends binary value “0” the DCO and PA are turned off. With this architecture and 2 MHz carrier wave we have implemented a wireless data and power transfer link which can transmit data with data rate 1Mbps and bit error rate (BER) of 10-5. The efficiency of power transfer is 42% with a 12.7 uH transmitter coil and a 2.4 uH receiver coil and the power delivered to the load is about 104.7 mW. Proposed transmitter is designed for output power 4.1V. OOK receiver consists of an OOK demodulator, powered by rectified and regulated 5V p-p RF signal across the receiver coil. The supply voltage of proposed voltage regulator is 5 V with 9mV/V line regulation of. All circuits proposed in this paper were designed and simulated using Cadence in 0.18 um CMOS process.</p>


Radiotekhnika ◽  
2021 ◽  
pp. 120-127
Author(s):  
D.G. Makarov ◽  
D.V. Chernov ◽  
V.V. Kryzhanovskyi ◽  
Yu.V. Rassokhina ◽  
V.G. Kryzhanovskyi ◽  
...  

The system of equations for processes in the amplifier output network is analytically formulated. This system of equations considers parameters of resonant networks at higher harmonics. To calculate amplifier output network, the system of five equations was built for five unknowns, to which the condition of positive second voltage derivative at extremum of drain voltage was added. Two equations correspond to class E conditions, another two — quadrature waveforms at load and at additional resonant network. The last equation is the condition of extremum at the point near middle of drain voltage pulse. This system was solved using computer algebra program. The circuit elements and waveforms were calculated using the derived parameters. By choosing different parameters, it is possible to obtain various amplifier realizations, which will demonstrate features of different class F variants. The obtained amplifier parameters drain voltage and current waveforms were verified with calculated ones using the harmonic balance simulating software. The variant, which is closer to class E/F3 mode, was chosen to build an experimental amplifier prototype on frequency 2MHz using IRF530 MOSFET as a switch. The prototype was tested in the range of supply dc voltage up to 24V with the output power greater than 6W, while the amplifier efficiency was >80%. In the experiment, the ratio of peak drain voltage to dc supply voltage was measured to be 3.3 at the duty ratio 50%, unlike class E amplifier, where this value is around 3.65, and on practice, considering non-linear drain to source capacitance, it may achieve 4. The experimental second harmonic level amounted to be -20 dB relatively to fundamental, and the third one — 28.5 dB, which is due to an additional second harmonic filter. The paper results are useful for introduction of such circuits to practice.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Wen An Tsou ◽  
Wen Shen Wuen ◽  
Tzu Yi Yang ◽  
Kuei Ann Wen

Analysis and compensation methodology of the AM-AM and AM-PM distortion of cascode class-E power amplifiers are presented. A physical-based model is proposed to illustrate that the nonlinear capacitance and transconductance cause the AM-AM and AM-PM distortion when modulating the supply voltage of the PA. A novel methodology that can reduce the distortion is also proposed. By degenerating common-gate transistor into a resistor, the constant equivalent impedance is obtained so that the AM-AM and AM-PM distortion is compensated. An experimental prototype of 2.6 GHz cascode class-E power amplifier with the AM-AM and AM-PM compensation has been integrated in a 0.18 μm CMOS technology, occupies a total die area of 1.6 mm2. It achieves a drain efficiency of 17.8% and a power-added efficiency of 16.6% while delivering 12 dBm of linear output power and drawing 31 mA from a 1.8 V supply. Finally, a co-simulation result demonstrated that, when the distortion of the PA has been compensated, the EVM is improved from −17 dB to −19 dB with an IEEE802.11a-like signal source.


2011 ◽  
Vol 3 (4) ◽  
pp. 405-413 ◽  
Author(s):  
Tao Cao ◽  
Songbai He ◽  
Fei You

An analysis of operation of a modified inverse class E power amplifier is presented. The proposed amplifier that has a series tunable parallel resonant tank is similar to a hybrid of class F and inverse class E. The principles and design equations required to determine the optimum operation of the amplifier are analyzed in detail. The practical circuit using LDMOS MRF21010 is shown to be able to deliver 40.02 dBm outpout power at 155 MHz. The amplifier achieves power-added efficiency (PAE) of 78.18% and drain efficiency of 78.42%, and exhibits 25.02 dB power gain when operates from a 21 V supply voltage. Comparisons of simulated and measured results are given with good agreement between them being achieved.


Author(s):  
Khairul Kamarudin Hasan ◽  
Shakir Saat ◽  
Yusmarnita Yusop ◽  
Huzaimah Husin ◽  
Nor Diyana Md Sin

In this work, the optimum zero voltage switching (ZVS) of Class E-LCCL capacitive power transfer (CPT) was determined via frequency tuning method. Through this an efficient system can be guanranteed although there is a change in the capacitive plates distance. This study used a Class-E LCCL inverter, as it can operate at a high alternate current frequency, besides producing low switching losses and minimal power losses. Specifically, this study conducted simulations and experiments to analyse the performance of an LCCL CPT System at 1 MHz operating frequency and 24 V DC supply voltage. Using an air gap distance of 0.1 cm, the designed CPT system prototype successfully achieved an output power of 10W and an efficiency of 95.45%. This study also found that by tuning the resonant frequency of the Class E-LCCL system, the optimum ZVS can be obtained although capacitive plate distance was varied from 1-3 cm via experimental. The results of this study could benefit medical implant and portable device development, consumer electronics, and environments that involve electrical hazards.


1992 ◽  
Vol 15 (6) ◽  
pp. 378-382 ◽  
Author(s):  
M.C. Zierhofer ◽  
E.S. Hochmair

This paper describes the inductive power and data link employed in the CAP Cochlear Prosthesis System (CAP stands for Combined Analog and Pulsative Stimulation Strategy). The inductive link consisting of a parallel-tuned receiver resonant circuit weakly coupled to a series-tuned transmitter resonant circuit, is driven by a self-oscillating class-E-tuned power amplifier. The class-E concept allows coupling-insensitive high-efficency transcutaneous transmission of power. In the CAP implant, variations of the coil distance within a range of 0 to 9 mm result in changes of the implant supply voltage which are lower than 10%. Within this coil distance range, the mean overall efficiency is 49%. In view of the excellent switching properties of the class-E tuned power oscillator, a practical scheme for data transmission is ASK (Amplitude Shift Keying). To ensure constant energy flow and easy synchronization of the bitstream in the implant, a self-clocking bit format is employed.


2014 ◽  
Vol 63 (4) ◽  
pp. 621-633 ◽  
Author(s):  
Miroslaw Mikolajewski

Abstract In a high-efficiency Class E ZVS resonant amplifier a matching and isolation transformer can replace some or even all inductive components of the amplifier thus simplifying the circuit and reducing its cost. In the paper a theoretical analysis, a design example and its experimental verification for a transformer Class E amplifier are presented. In the experimental amplifier with a transformer as the only inductive component in the circuit high efficiency ηMAX = 0.95 was achieved for supply voltage VI = 36 V, maximum output power POMAX = 100 W and the switching frequency f = 300 kHz. Measured parameters and waveforms showed a good agreement with theoretical predictions. Moreover, the relative bandwidth of the switching frequency was only 19% to obtain output power control from 4.8 W to POMAX with efficiency not less than 0.9 in the regulation range.


Sign in / Sign up

Export Citation Format

Share Document