A High-gain Low-offset Baseband Design for Multi-Standard Navigation Receivers

Author(s):  
Jeffin Joy ◽  
Swetha Clara Jose ◽  
Vijaya Kumar Kanchetla ◽  
Shubham Jain ◽  
Rajesh Zele
Keyword(s):  
2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim ◽  
Evgenii Balashov

The given work is devoted to designing and implementing different dynamic offset cancellation techniques for 50 nm technology CMOS operational amplifiers. The goal is to minimize or get rid of the effects of the offset voltage. Offset voltage exists in all differential amplifiers due to the fact that no pair of transistors can be fabricated with the same size, there is always a slight difference in their dimensions (length or width), this gives rise to an undesirable effect called offset, the value of offset voltage for cheap commercial amplifiers are in the range of 1 to 10 mV, de-spite the fact that this isn’t a significant value, due to the high gain of such amplifiers, this voltage is amplified by tens or hundreds of times, this results in clipping of the output signal and this further limits the amplifier’s maximum allowable input voltage within the given dynamic range, hence its of great importance to take this small voltage into consideration, low-offset amplifiers find applications in mixers, analog to digital converters, instrumentation devices, etc. In this thesis, by using two different techniques for removing offset voltage (chopping and auto-zeroing), five low offset operational amplifiers were designed. The implemented methods reduced the flicker noise by more than 457 times (from 9.4 nV/√Hz to 20 pV/√Hz) at 1 Hz. All the simulations were done using Cadence Virtuoso.


2002 ◽  
Vol 25 (3) ◽  
pp. 239-243
Author(s):  
K. F. Yarn

The influence of delta doping sheet at base-emitter (BE) junction for an InGaP/GaAs heterojunction bipolar transistor (HBT) with a 75Å undoped spacer layer is investigated. A common emitter current gain of 235, an offset voltage as small as 50mV and an Ic ideal factor of 1.01 are obtained, respectively. The use of delta doping sheet at BE junction results in a high gain and low offset voltage HBT. The improvement of current gain and offset voltage may be attributed to the reduction of BE potential spike by introducing a delta doping layer even without the BE junction passivation.


2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim ◽  
Evgenii Balashov

The given work is devoted to designing and implementing different dynamic offset cancellation techniques for 50 nm technology CMOS operational amplifiers. The goal is to minimize or get rid of the effects of the offset voltage. Offset voltage exists in all differential amplifiers due to the fact that no pair of transistors can be fabricated with the same size, there is always a slight difference in their dimensions (length or width), this gives rise to an undesirable effect called offset, the value of offset voltage for cheap commercial amplifiers are in the range of 1 to 10 mV, de-spite the fact that this isn’t a significant value, due to the high gain of such amplifiers, this voltage is amplified by tens or hundreds of times, this results in clipping of the output signal and this further limits the amplifier’s maximum allowable input voltage within the given dynamic range, hence its of great importance to take this small voltage into consideration, low-offset amplifiers find applications in mixers, analog to digital converters, instrumentation devices, etc. In this thesis, by using two different techniques for removing offset voltage (chopping and auto-zeroing), five low offset operational amplifiers were designed. The implemented methods reduced the flicker noise by more than 457 times (from 9.4 nV/√Hz to 20 pV/√Hz) at 1 Hz. All the simulations were done using Cadence Virtuoso.


2019 ◽  
Vol 29 (04) ◽  
pp. 2050060
Author(s):  
Mehmet Sagbas ◽  
Umut Engin Ayten

In this work, a high-performance voltage and current output instrumentation amplifier circuit is proposed. The proposed circuit also has voltage-mode (VM) and transadmittance-mode (TAM) outputs at a time. It employs a single current backward transconductance amplifier (CBTA) and a grounded resistor. It has the advantage of having low input and high output impedances which makes it easy for cascadability. The presented circuit has electronically tunable property due to the bias current of the CBTA. The validity of the proposed circuit is demonstrated by PSPICE simulations using a 0.18[Formula: see text][Formula: see text]m CMOS process with [Formula: see text][Formula: see text]V supply voltage. Simulation results show that the proposed circuit has a high common mode rejection ratio (CMRR), wide bandwidth, low offset and high gain properties.


Sign in / Sign up

Export Citation Format

Share Document