A physics based compact model for drain current in AlGaN/GaN HEMT devices

Author(s):  
Sourabh Khandelwal ◽  
Tor A. Fjeldly
Keyword(s):  
Author(s):  
Husna Hamza K ◽  
D. Nirmal ◽  
A.S.Augustine Fletcher ◽  
L.Arivazhagan ◽  
J.Ajayan ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2092
Author(s):  
Ke Li ◽  
Paul Leonard Evans ◽  
Christopher Mark Johnson ◽  
Arnaud Videt ◽  
Nadir Idir

In order to model GaN-HEMT switching transients and determine power losses, a compact model including dynamic RDSon effect is proposed herein. The model includes mathematical equations to represent device static and capacitance-voltage characteristics, and a behavioural voltage source, which includes multiple RC units to represent different time constants for trapping and detrapping effect from 100 ns to 100 s range. All the required parameters in the model can be obtained by fitting method using a datasheet or experimental characterisation results. The model is then implemented into our developed virtual prototyping software, where the device compact model is co-simulated with a parasitic inductance physical model to obtain the switching waveform. As model order reduction is applied in our software to resolve physical model, the device switching current and voltage waveform can be obtained in the range of minutes. By comparison with experimental measurements, the model is validated to accurately represent device switching transients as well as their spectrum in frequency domain until 100 MHz. In terms of dynamic RDSon value, the mismatch between the model and experimental results is within 10% under different power converter operation conditions in terms of switching frequencies and duty cycles, so designers can use this model to accurately obtain GaN-HEMT power losses due to trapping and detrapping effects for power electronics converters.


2018 ◽  
Vol 201 ◽  
pp. 01002
Author(s):  
Aanand ◽  
Gene Sheu ◽  
Syed Sarwar Imam ◽  
Shao Wei Lu ◽  
Shao-Ming Yang ◽  
...  

In this paper, we report nanowire drain saturation current sensitivity property to measure femtomol level change in drain current due to different proteins i.e. DNA with numerical simulation and fabricated polysilicon nanowire based on the theoretical predictions. In addition, the drain current will also be affected by the back-gate voltage and will increase as the back-gate voltage increases. A 3-dimensional Synopsis tool is used to investigate the drain current behavior for a polysilicon nanowire. The scattering compact model reported result of detailed numerical calculation shows in good agreement, indicating the usefulness of scattering compact model. Whereas 3D synopsis unable to explain the whole region of the drain current characteristics in linear region which uses quantum mechanics model approach.


2012 ◽  
Vol 1432 ◽  
Author(s):  
D. Cheney ◽  
R. Deist ◽  
B. Gila ◽  
F. Ren ◽  
P. Whiting ◽  
...  

ABSTRACTBy pumping AlGaN/GaN HEMTs with below band-gap light we observe changes in drain current that correspond to the trapping and detrapping of carriers within the band-gap. These changes in drain current are indicators of trap density, since the energy from a specific wavelength of light pumps traps whose activation energies are less than or equal to that of the light source.AlGaN/GaN HEMTs on SiC with dual submicron gates with widths of 125nm, 140nm, or 170nm, are DC-stressed under three different conditions along a load line: VGS=0, VDS=5 (on-state), VGS=-2, VDS=9.2 and, VGS=-6, VDS=25 (off-state). The stress tests are interrupted at 20% degradation and the optically pumped comparisons to the baseline are measured.This paper describes the optical pumping technique and results from experiments of AlGaN/GaN HEMTs under the three DC stress biases along a load line.


2021 ◽  
Author(s):  
A.S. Augustine Fletcher ◽  
D Nirmal ◽  
J Ajayan ◽  
L Arivazhagan ◽  
Husna Hamza K ◽  
...  

Abstract The influence of double deck T-gate on LG=0.2 μm AlN/GaN/AlGaN HEMT is analysed in this paper. The T-gate supported with Silicon Nitride provides a tremendous mechanical reliability. It drops off the crest electric-field at gate edges and postponing the breakdown voltage of a device. A 0.2-μm double deck T-gate HEMT on Silicon Carbide substrate offer fMAX of 107 Giga Hertz, fT of 60 Giga Hertz and the breakdown voltage of 136 Volts. Furthermore, it produces the maximum-transconductance and drain-current of 0.187 Siemens/mm and 0.41 Ampere/mm respectively. In addition, the lateral electric-field noticed at gate-edge shows 2.1×106 Volts/cm. Besides, the double deck T-gate AlN/GaN HEMT achieves a 45 % increment in breakdown voltage compared to traditional GaN-HEMT device. Moreover, it reveals a remarkable Johnson figure-of-merit of 7.9 Tera Hertz Volt. Therefore, the double deck T-gate on AlN/GaN/AlGaN HEMT is the superlative device for 60 GHz V-band satellite application.


2017 ◽  
Vol 64 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Theodoros A. Oproglidis ◽  
Andreas Tsormpatzoglou ◽  
Dimitrios H. Tassis ◽  
Theano A. Karatsori ◽  
Sylvain Barraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document