Power Efficiency and Power Delivery Measurement in Inductive Links with Arbitrary Source and Load Impedance Values

Author(s):  
S. Abdollah Mirbozorgi ◽  
Yaoyao Jia ◽  
Maysam Ghovanloo
2018 ◽  
Vol 5 (2) ◽  
pp. 87-96 ◽  
Author(s):  
Yi Zhao ◽  
Huaye Li ◽  
Saman Naderiparizi ◽  
Aaron Parks ◽  
Joshua R. Smith

Near-field communication (NFC) readers, ubiquitously embedded in smartphones and other infrastructures can wirelessly deliver mW-level power to NFC tags. Our previous work NFC-wireless identification and sensing platform (WISP) proves that the generated NFC signal from an NFC enabled phone can power a tag (NFC-WISP) with display and sensing capabilities in addition to identification. However, accurately aligning and placing the NFC tag's antenna to ensure the high power delivery efficiency and communication performance is very challenging for the users. In addition, the performance of the NFC tag is not only range and alignment sensitive but also is a function of its run-time load impedance. This makes the execution of power-hungry tasks on an NFC tag (like the NFC-WISP) very challenging. Therefore, we explore a low-cost tag antenna design to achieve higher power delivered to the load (PDL) by utilizing two different antenna configurations (2-coil/3-coil). The two types of antenna configurations can be used to dynamically adapt to the requirements of varied range, alignment and load impedance in real-time, therefore, we achieve continuous high PDL and reliable communication. With the proposed method, we can, for example, turn a semi-passive NFC-WISP into a passive display tag in which an embedded 2.7″ E-ink screen can be updated robustly by a tapped NFC reader (e.g. an NFC-enable cell-phone) over a 3 seconds and within 1.5cm range.


2015 ◽  
Vol 51 (1) ◽  
pp. 591-599 ◽  
Author(s):  
Matthew Fellows ◽  
Charles Baylis ◽  
Lawrence Cohen ◽  
Robert J. Marks Ii

2010 ◽  
Vol 66 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Peter Harrington ◽  
Sudipto Chakraborty ◽  
Bertan Bakkaloglu

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3768
Author(s):  
Zdenek Machacek ◽  
Wojciech Walendziuk ◽  
Vojtech Sotola ◽  
Zdenek Slanina ◽  
Radek Petras ◽  
...  

In this study, we present the results of measuring the performance of selected Peltier cells such as thermoelectric Peltier cooler modules (TEC), thermoelectric micro-Peltier cooler modules (TES), and thermoelectric Seebeck generator modules (TEG). The achieved results are presented in the form of graphs of powering system output voltage or power efficiency functions of the load impedance. Moreover, a technical solution is also presented that consists of designing a water consumption power supply system, using a renewable energy source in the form of a Peltier cell. The developed measuring system does not require additional batteries or an external power source. The energy needed to power the system was obtained from the temperature difference between two sides of a thermoelectric cell, caused by the measured medium which was flowing in a copper water pipe. All achieved results were investigated for the temperature difference from 1 to 10 K in relation to the ambient temperature.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-27
Author(s):  
An Zou ◽  
Huifeng Zhu ◽  
Jingwen Leng ◽  
Xin He ◽  
Vijay Janapa Reddi ◽  
...  

Despite being employed in numerous efforts to improve power delivery efficiency, the integrated voltage regulator (IVR) approach has yet to be evaluated rigorously and quantitatively in a full power delivery system (PDS) setting. To fulfill this need, we present a system-level modeling and design space exploration framework called Ivory for IVR-assisted power delivery systems. Using a novel modeling methodology, it can accurately estimate power delivery efficiency, static performance characteristics, and dynamic transient responses under different load variations and external voltage/frequency scaling conditions. We validate the model over a wide range of IVR topologies with silicon measurement and SPICE simulation. Finally, we present two case studies using architecture-level performance and power simulators. The first case study focuses on optimal PDS design for multi-core systems, which achieves 8.6% power efficiency improvement over conventional off-chip voltage regulator module– (VRM) based PDS. The second case study explores the design tradeoffs for IVR-assisted PDSs in CPU and GPU systems with fast per-core dynamic voltage and frequency scaling (DVFS). We find 2 μs to be the optimal DVFS timescale, which not only reaps energy benefits (12.5% improvement in CPU and 50.0% improvement in GPU) but also avoids costly IVR overheads.


Author(s):  
N. X. Yin ◽  
Shakir Saat ◽  
S. H. Husin ◽  
Y. Yusop ◽  
M. R. Awal

Since many years ago, kitchen appliances are powered up by cable connected. This create a troublesome case as wire might tangle together and cause kitchen table messy. Due to this, wireless power technology (WPT) is introduced as its ability is to transmit power to load without physical contact. This leads to cordless solution better in safety as the product can be completely seal, highly expandable power range. This work focuses on the design of WPT based on inductive approach to power up multiple kitchen appliances. The selection of inductive approach over its partners capacitive and acoustic is mainly due to high power efficiency. Class E inverter is proposed here to convert the DC to AC current to drive the inductive link. A 1 MHz operating frequency is used. To ensure the circuit is robust with load variations, an LCCL impedance matching is proposed. This solution is table to maintain the output power if there is a slight change in load impedance. Finally, the developed prototype is able to supply 50V utput which can achieve power transmission up to 81.76%.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1785
Author(s):  
Changjoo Park ◽  
Minjae Lee

This brief presents a hybrid of voltage- and current-mode line drivers for the turbo controller area network (CAN). The current-mode scheme prevents signal attenuation caused by source termination resistors, and it enhances signal power efficiency. On top of that, an adaptive amplitude tuning is implemented to mitigate non-linearity and closed-loop gain variations against load impedance variations. The proposed line driver achieves 87.0% power-efficiency and total harmonic distortion, plus noise (THD+N) of −49.0 dB at an input frequency of 40 MHz and output swing of 2.8 VPP differential. The adaptive amplitude tuning allows load impedance variations from 80 Ω to 160 Ω. The total power consumption is 37.6 mW with a 1.8 V supply voltage in 180 nm CMOS, and it occupies 0.377 mm2.


2011 ◽  
Vol 131 (4) ◽  
pp. 288-294 ◽  
Author(s):  
Tatsuya Furukawa ◽  
Keita Akagi ◽  
Hisao Fukumoto ◽  
Hideaki Itoh ◽  
Hiroshi Wakuya ◽  
...  

2015 ◽  
Vol 135 (3) ◽  
pp. 114-115 ◽  
Author(s):  
Ryoto Sato ◽  
Daisuke Yasumatsu ◽  
Shinya Kumagai ◽  
Masaru Hori ◽  
Minoru Sasaki

Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


Sign in / Sign up

Export Citation Format

Share Document