Unified Software-Defined Online Network Experiment Platform for Campus Education

Author(s):  
Siyu Wang ◽  
Rentao Gu ◽  
Yuefeng Ji ◽  
Youqiang Hu ◽  
Qize Guo ◽  
...  
2021 ◽  
Vol 11 (15) ◽  
pp. 7100
Author(s):  
Yong Han ◽  
Wenjun Wu ◽  
Lijun Zhang ◽  
Yu Liang

In this work, we studied the online blended learning model of computer network experimentation, focusing mainly on the problem of traditional network experiments being limited by location and time, and explore the applicability of the small private online course (SPOC) advanced teaching concepts to computer network online experiment teaching. Based on the structure of a combination of virtual and real, real and not virtual, an online network experiment platform and management system has been designed and constructed, enabling students to carry out remote online computer network hardware experiments anytime and anywhere, without being restricted by time, space, or content. Using the online network experiment platform, we can organize the experimental modules and knowledge points via the SPOC course concept, by developing online network experimental content, modularizing and fragmenting of the experiments, creating the pre-experimental explanation and experiment preview videos, and evaluating the assignments via peer grading to analyze students’ learning behavior. By exploring online network experimental teaching methods and management models, offering experimental guidance in an interactive manner, and highlighting the openness and sharing characteristics of online experimental teaching platforms, we can improve the utilization rate for teaching resources, and provide ideas for applied scientific research methods.


2013 ◽  
Vol 443 ◽  
pp. 468-472
Author(s):  
Jian Jun Wang

This paper presents an object-event mechanism based overlay network simulation experimental platform (ONSP). The platform adopts object-oriented approaches to provide an effective application-layer active network simulation method. The method abstracts network elements, simulates the change of system performance through parameters setting, and introduces users session triggered by event. This strategy conducts experiments avoiding unnecessary construction of actual physical network, so that to save the cost of the experiment and to make mass network tests possible. At another time, the platform has established a complete performance evaluation model, and can synthetically measure the relative performance of variety of services to ensure the accuracy of test results. The productions in this paper will provide important support to overlay network services technology, QoS-assure technology, and applications of distributed multimedia systems.


2021 ◽  
Vol 11 (7) ◽  
pp. 3188
Author(s):  
Xixiang Wang ◽  
Jiafu Wan

The development of multi-variety, mixed-flow manufacturing environments is hampered by a low degree of automation in information and empirical parameters’ reuse among similar processing technologies. This paper proposes a mechanism for knowledge sharing between manufacturing resources that is based on cloud-edge collaboration. The manufacturing process knowledge is coded using an ontological model, based on which the manufacturing task is refined and decomposed to the lowest-granularity concepts, i.e., knowledge primitives. On this basis, the learning process between devices is realized by effectively screening, matching, and combining the existing knowledge primitives contained in the knowledge base deployed on the cloud and the edge. The proposed method’s effectiveness was verified through a comparative experiment contrasting manual configuration and knowledge sharing configuration on a multi-variety, small-batch manufacturing experiment platform.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shijun Chen ◽  
Qi Zhang ◽  
Surong Huang

To more efficiently design high performance vehicular permanent magnet motor, an electromagnetic-thermal integration design method is presented, which considers both the electromagnetic properties and the temperature rise of motor winding when determining the main dimensional parameters of the motor. Then a 48-slot and 8-pole vehicular permanent magnet motor is designed with this method. The thermomagnetic coupling design is simulated and validated on the basis of multiphysical domain on finite element analysis. Then the prototype is analyzed and tested on a newly built motor experiment platform. It is shown that the simulation results and experimental results are consistent, which validate the accuracy and effectiveness of the new design method. Also this method is proved to well improve the efficiency of permanent magnet motor design.


2021 ◽  
Vol 9 (8) ◽  
pp. 812
Author(s):  
Lin Hong ◽  
Renjie Fang ◽  
Xiaotian Cai ◽  
Xin Wang

This paper conducts a numerical investigation on the hydrodynamic performance of a portable autonomous underwater vehicle (AUV). The portable AUV is designed to cruise and perform some tasks autonomously in the underwater world. However, its dynamic performance is strongly affected by hydrodynamic effects. Therefore, it is crucial to investigate the hydrodynamic performance of the portable AUV for its accurate dynamic modeling and control. In this work, based on the designed portable AUV, a comprehensive hydrodynamic performance investigation was conducted by adopting the computational fluid dynamics (CFD) method. Firstly, the mechanical structure of the portable AUV was briefly introduced, and the dynamic model of the AUV, including the hydrodynamic term, was established. Then, the unknown hydrodynamic coefficients in the dynamic model were estimated through the towing experiment and the plane-motion-mechanism (PMM) experiment simulation. In addition, considering that the portable AUV was affected by wave forces when cruising near the water surface, the influence of surface waves on the hydrodynamic performance of the AUV under different wave conditions and submerged depths was analyzed. Finally, the effectiveness of our method was verified by experiments on the standard models, and a physical experiment platform was built in this work to facilitate hydrodynamic performance investigations of some portable small-size AUVs.


Sign in / Sign up

Export Citation Format

Share Document