Systematic Study of Feed Line and Ground Plane Modifications for Design of Miniaturized Wideband Antennas

Author(s):  
Muhammad Aziz ul Haq ◽  
Slawomir Koziel ◽  
Muhammad Arif Khan
2019 ◽  
Vol 11 (10) ◽  
pp. 1054-1060
Author(s):  
Kapil Saraswat ◽  
A. R. Harish

AbstractA polarization and band reconfigurable cross-slot antenna for multiband applications is presented in this paper. The antenna consists of four p–i–n diodes embedded in the cross-shaped slot in a ground plane and excited by a microstrip feed line. The p–i–n diodes are placed in such a way that they produce multiple bands, with linearly and circularly polarized (CP) radiation. By switching the states of the p–i–n diodes, the sense of rotation of the electric field in CP radiation can be reconfigured. The proposed structure can be configured to produce two bands that radiate linearly polarized waves or three bands, where, two are linearly polarized and one is CP. The proposed design concepts are validated bythe CST studio suite as well as measurementsare carried out on fabricated prototypes.


A wideband coplanar waveguide (CPW) antenna with circular polarization characteristics using modified ground slot is studied in this work. Proposed design incorporates a hexagonal slot instead of rectangular slot, accounting for enhanced impedance matching. This ground slot is energized by a 50Ω feed line, resulting in excitation of two orthogonal phase quadrature modes (even-odd modes). Thus, fulfilling the essential criteria required for realizing circular polarization. A narrow horizontal slit (lg) is embedded in the ground plane at immediate left of feed line, accounting for wideband characteristics. 10dB impedance bandwidth of proposed antenna extends from 2.65- 5.60 GHz, while 3dB axial ratio bandwidth extends from 3.90- 5.80 GHz. Hence, overlapping bandwidth of proposed antenna extends from 3.90 - 5.60 GHz. RHCP characteristics with monopole radiation pattern makes proposed antenna useful for WLAN, radio navigation and radiolocation applications.


2021 ◽  
Author(s):  
Srikanth Itapu

Abstract A Co-Planar Waveguide fed circular ultra-wide band antenna with modified ground-plane and feedline is designed on a FR4 (ϵr=4.3) substrate of thickness 0.01λ0. The proposed antenna exhibits an overall impedance bandwidth ranging from 2.99 GHz to 18.0 GHz and beyond (with S11< -10 dB). Design parameters have been optimized to achieve the UWB bandwidth. The measured radiation patterns of this antenna are omnidirectional in H- plane and bidirectional in E-plane. An extended impedance bandwidth is achieved as a result of modified feed-line. The proposed antenna can be used for medical imaging and urban IoT applications.


A MIMO antenna with micro strip fed ultra wide band nature with characteristics of single band notching is presented in this paper. MIMO antenna has two monopole antennas. Larger impedance bandwidth is obtained by providing slots beside the feed line on ground plane. By using parasitic element on back side of patch band notching characteristics cab be obtained. Here, antenna size is 44x22x1.6 mm3 . This antenna operates over the frequency band 4GHz to 11GHz with notched frequency band 5.1GHz to 5.9GHz. By keeping two monopole antennas perpendicular to each other, isolation of less than - 15dB is obtained and good value of ECC is obtained.


In this paper, simple triband Multiple Input and Multiple Output (MIMO) antenna is proposed for wireless communication technology. This antenna consists of two symmetric monopoles which are placed at a distance of 0.106λ0 and for board area it occupies 0.25λ0*0.26λ0 . By integrating a stub in the ground plane and adding the stub in the feed line, isolation is achieved more than 20dB.This triband MIMO antenna operates under 2.5GHz, 3.3GHz and 4.4 GHz. The proposed antenna gives Radiation Patterns and Stable Gain. Mean effective gain (MEG) and Diversity Gain (DG) are also measured.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
Jaehoon Lee

We present a simple coplanar waveguide- (CPW-) fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN) applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 366
Author(s):  
B Siva Prasad ◽  
P Mallikarjuna Rao ◽  
B T P Madhav

A coplanar wave guide fed fork shaped antenna is designed with reconfigurability for switching between the application bands of LTE, Wi-Fi and WLAN. A novel closed hut shaped ground plane structure is used in the construction of the antenna model for good impedance matching with the feed line. The basic structure of the antenna model is working in the UWB range from 3.1 to 10.6 GHz. The adjacent strips of the monopole consisting of the slots for the placement of PIN diodes. The switching operation of the diodes providing frequency reconfigurability nature in the antenna between LTE (2.1-2.2 GHz), Wi-Fi (2.4 to 2.7 GHz) and WLAN (5.6-5.8 GHz) bands. Antenna is providing peak realized gain of 4.5 dB and efficiency more than 70% in the operating bands. The prototyped antenna is providing excellent measurement results in correlation with simulation results obtained from CST Microwave Studio.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. N. Shakib ◽  
M. Moghavvemi ◽  
W. N. L. Mahadi

A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of0.182λ × 0.228λ × 0.018λwhereλis the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size.


Sign in / Sign up

Export Citation Format

Share Document