A 9 dB Noise Figure Fully Integrated 79 GHz Automotive Radar Receiver in 40 nm CMOS Technology

Author(s):  
Tomotoshi Murakami ◽  
Nobumasa Hasegawa ◽  
Yoshiyuki Utagawa ◽  
Tomoyuki Arai ◽  
Shinji Yamaura
2013 ◽  
Vol 8 (1) ◽  
pp. 32-42
Author(s):  
Paulo M. Moreira e Silva ◽  
Fernando Rangel de Sousa

We present in this paper the analysis, design and measurement results of a low noise amplifier (LNA) operating in the ISM band at 2.45 GHz. The circuit topology adopted was based on a current reuse technique to minimize the power consumption. A prototype was fabricated in a 0.18-μm standard CMOS technology and the measured power consumption was 1.1 mW. The measured input reflection coefficient was below -10 dB and the reverse isolation was higher than 20 dB. The measured insertion gain and noise figure were 5.6 dB and 4.8 dB respectively, with divergences from the simulated values of 5 dB and 2 dB, respectively. To explain these discrepancies, we devised an analysis on the circuit, including sources of uncertainties. Moreover, we characterized a transistor included in the LNA die, that helped to explain part of the disagreements. After including the uncertainty sources, we wereaable to explain a deviation of 3.9 dB in the insertion gain with respect to the simulated result.


2013 ◽  
Vol 22 (09) ◽  
pp. 1340008 ◽  
Author(s):  
HYEONSEOK HWANG ◽  
HOONKI KIM ◽  
CHAN-HUI JEONG ◽  
CHAN-KEUN KWON ◽  
SANGGEUN JEON ◽  
...  

A fully integrated three stage cascaded radio frequency variable gain amplifier (RFVGA) linearly controlled by exponential current generation circuit is presented. The gain control is unequally distributed in each stage for noise figure (NF) and linearity performance. The dB-linear gain control is realized using pseudo exponential current generated by CMOS current summing circuit with a voltage to current converter. The RFVGA has over 50 dB dynamic range. Gain changes from -38.5 to 16.8 dB according to control voltage that varies from 0.5 to 1.8 V. It operates at 0.95–2.15 GHz. This design is implemented in 0.18 μm CMOS technology.


2011 ◽  
Vol 6 (1) ◽  
pp. 18-24
Author(s):  
Stanley S. K. Ho ◽  
Carlos E. Saavedra

An active mixer using a Gilbert-cell topology that incorporates a low-noise RF transconductance stage is presented in this paper. The chip operates at a frequency of 5.4 GHz and was fabricated in 180 nm CMOS technology. A current-bleeding circuit is used to provide different dc bias currents to the LO switching stage and the RF transconductors. The transconductor, designed using the power constrained simultaneous noise and input match technique, together with the bleeding circuit enables the mixer to have a measured single-sideband noise figure of 7.8 dB and a power conversion gain of 13.1 dB. The measured input-referred 1-dB compression point, IP1dB is -17.8 dBm while its OP1dB is -5 dBm. A two-tone test was carried out and the mixer exhibits an IIP3 of -6.2 dBm and an OIP3 of +6.9 dBm. All of the inductors are on-chip and the size of the mixer core is only 380 μm x 350 μm (0.133 mm2).


2018 ◽  
Vol 11 (1) ◽  
pp. 3-6
Author(s):  
Md. Jamil Uddin ◽  
Hadaate Ullah ◽  
Mohammad Arif Sobhan Bhuiyan

Abstract The bandpass filter is one of the essential blocks of every modern RF transceiver. Performance of the transceiver greatly depends on the performance of the bandpass filter. A bandpass filter designed with passive inductors suffers from some drawbacks like large chip size, low-quality factor, less tenability etc. To prevail over these constraints, an active inductor-based bandpass filter circuit has been designed in GPDK-90nm CMOS technology utilizing cadence virtuoso environment. The simulation result shows that the active inductor-based bandpass filter circuit design achieves a gain of 6.79dB, a bandwidth of 5.05 GHz and a noise figure of 3.10dB. The circuit dissipates only 3.55mW power for its operation from a single 1.5V DC supply. By avoiding bulky inductor in the design helped to attain a very small chip area of 127.704μm2.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750075 ◽  
Author(s):  
Najam Muhammad Amin ◽  
Lianfeng Shen ◽  
Zhi-Gong Wang ◽  
Muhammad Ovais Akhter ◽  
Muhammad Tariq Afridi

This paper presents the design of a 60[Formula: see text]GHz-band LNA intended for the 63.72–65.88[Formula: see text]GHz frequency range (channel-4 of the 60[Formula: see text]GHz band). The LNA is designed in a 65-nm CMOS technology and the design methodology is based on a constant-current-density biasing scheme. Prior to designing the LNA, a detailed investigation into the transistor and passives performances at millimeter-wave (MMW) frequencies is carried out. It is shown that biasing the transistors for an optimum noise figure performance does not degrade their power gain significantly. Furthermore, three potential inductive transmission line candidates, based on coplanar waveguide (CPW) and microstrip line (MSL) structures, have been considered to realize the MMW interconnects. Electromagnetic (EM) simulations have been performed to design and compare the performances of these inductive lines. It is shown that the inductive quality factor of a CPW-based inductive transmission line ([Formula: see text] is more than 3.4 times higher than its MSL counterpart @ 65[Formula: see text]GHz. A CPW structure, with an optimized ground-equalizing metal strip density to achieve the highest inductive quality factor, is therefore a preferred choice for the design of MMW interconnects, compared to an MSL. The LNA achieves a measured forward gain of [Formula: see text][Formula: see text]dB with good input and output impedance matching of better than [Formula: see text][Formula: see text]dB in the desired frequency range. Covering a chip area of 1256[Formula: see text][Formula: see text]m[Formula: see text]m including the pads, the LNA dissipates a power of only 16.2[Formula: see text]mW.


Author(s):  
Philipp Ritter

Abstract Next-generation automotive radar sensors are increasingly becoming sensitive to cost and size, which will leverage monolithically integrated radar system-on-Chips (SoC). This article discusses the challenges and the opportunities of the integration of the millimeter-wave frontend along with the digital backend. A 76–81 GHz radar SoC is presented as an evaluation vehicle for an automotive, fully depleted silicon-over-insulator 22 nm CMOS technology. It features a digitally controlled oscillator, 2-millimeter-wave transmit channels and receive channels, an analog base-band with analog-to-digital conversion as well as a digital signal processing unit with on-chip memory. The radar SoC evaluation chip is packaged and flip-chip mounted to a high frequency printed circuit board for functional demonstration and performance evaluation.


2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 84
Author(s):  
N Malika Begum ◽  
W Yasmeen

This paper presents an Ultra-Wideband (UWB) 3-5 GHz Low Noise Amplifier (LNA) employing Chebyshev filter. The LNA has been designed using Cadence 0.18um CMOS technology. Proposed LNA achieves a minimum noise figure of 2.2dB, power gain of 9dB.The power consumption is 6.3mW from 1.8V power supply.  


2017 ◽  
Vol 7 (1.3) ◽  
pp. 69
Author(s):  
M. Ramana Reddy ◽  
N.S Murthy Sharma ◽  
P. Chandra Sekhar

The proposed work shows an innovative designing in TSMC 130nm CMOS technology. A 2.4 GHz common gate topology low noise amplifier (LNA) using an active inductor to attain the low power consumption and to get the small chip size in layout design. By using this Common gate topology achieves the noise figure of 4dB, Forward gain (S21) parameter of 14.7dB, and the small chip size of 0.26 mm, while 0.8mW power consuming from a 1.1V in 130nm CMOS gives the better noise figure and improved the overall performance.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 448
Author(s):  
S Manjula ◽  
M Malleshwari ◽  
M Suganthy

This paper presents a low power Low Noise Amplifier (LNA) using 0.18µm CMOS technology for ultra wide band (UWB) applications. gm boosting common gate (CG) LNA is designed to improve the noise performance.  For the reduction of on chip area, active inductor is employed at the input side of the designed LNA for input impedance matching. The proposed UWB LNA is designed using Advanced Design System (ADS) at UWB frequency of 3.1-10.6 GHz. Simulation results show that the gain of 10.74+ 0.01 dB, noise figure is 4.855 dB, input return loss <-13 dB and 12.5 mW power consumption.  


Sign in / Sign up

Export Citation Format

Share Document