A WIDEBAND CMOS CASCADED VARIABLE GAIN AMPLIFIER USING UNEQUALLY DISTRIBUTED GAIN CONTROL FOR DVB-S.2 RECEIVER

2013 ◽  
Vol 22 (09) ◽  
pp. 1340008 ◽  
Author(s):  
HYEONSEOK HWANG ◽  
HOONKI KIM ◽  
CHAN-HUI JEONG ◽  
CHAN-KEUN KWON ◽  
SANGGEUN JEON ◽  
...  

A fully integrated three stage cascaded radio frequency variable gain amplifier (RFVGA) linearly controlled by exponential current generation circuit is presented. The gain control is unequally distributed in each stage for noise figure (NF) and linearity performance. The dB-linear gain control is realized using pseudo exponential current generated by CMOS current summing circuit with a voltage to current converter. The RFVGA has over 50 dB dynamic range. Gain changes from -38.5 to 16.8 dB according to control voltage that varies from 0.5 to 1.8 V. It operates at 0.95–2.15 GHz. This design is implemented in 0.18 μm CMOS technology.

2013 ◽  
Vol 321-324 ◽  
pp. 331-335
Author(s):  
Shan Wen Hu ◽  
Tao Chen ◽  
Huai Gao ◽  
Long Xing Shi ◽  
G.P. Li

A traveling wave matching (TWM) network is proposed for broadband variable gain amplifier design. The TWM network lessens input return loss and noise figure dependence on VGA’s gain, which is adjusted by biasing of the gain control circuit. A wide band (DC to 12 GHz) VGA with the novel TWM network as input matching is implemented in 2μm InGaP/GaAs HBT (fT of 29.5GHz) technology with die size of 1×2 mm2. As gain control voltage sweeps, the VGA shows a gain tuned from -15 dB to 15 dB and an average noise figure ranging from 8dB to 6.5dB, while S11 (lower than -20dB) and S22 (lower than -10dB) almost unchanged over the operation frequency band.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Francesco Centurelli ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Pasquale Tommasino ◽  
Alessandro Trifiletti

Abstract Analysis, design, and characterization of an E-band Variable Gain Amplifier (VGA) in SiGe BiCMOS commercial technology is presented. VGA topologies are compared in terms of their capability to contribute to receiver linearity and dynamic range. The proposed VGA is based on a Gilbert multiplier cell exploiting current cancellation to enhance control range and linearity. A 1 dB bandwidth ranging from 80 to 100 GHz, a 24 dB gain control range and a −11.5 dBm input 1 dB compression point have been measured.


2012 ◽  
Vol 155-156 ◽  
pp. 167-170
Author(s):  
Wei Jia Zhang ◽  
Bo Wang

A using SiGe HBT variable gain amplifier (VGA) with filtering for wireless receiver system is presented in this paper. The VGA consists of three stages. The first stage is the gain control stage, and the second stage is the fixed gain stage. The third is the GM-C filter. The VGA is driven by a 3.3-V power supply, and linear gain control range varying is from 26 dB to 62dB. When control voltage varies from 0 to 1.8V. The input 1-dB compression point is -4dBm at minimum gain. The VGA is fabricated in a 0.5 μm = 80GHz and =90GHz silicon germanium heterojunction transistor technology.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550036 ◽  
Author(s):  
Zhengfei Hu ◽  
Li Zhang ◽  
Mindi Huang

An L1 band highly integrated low noise GPS receiver in 0.18-μm CMOS is presented in this paper. The receiver adopts double conversion structure and two dynamic range control modes of variable gain amplifier (VGA) and programmable gain amplifier (PGA). The receiver includes the blocks of LNA, down-conversion mixers, band pass filter, received signal strength indicator (RSSI), VGA, PGA, 2-bit ADC, two frequency synthesizers and so on. The LNA adopts source inductive degeneration technique to achieve good noise performance, and a novel positive feedback capacitor is introduced to enhance gain. The novel gain-boosting charge pump (CP) structure acquires accurate current matching of 0.1% error which improves the output phase noise of frequency synthesizer. The measured radio performances of noise figure (NF) is only 4 dB and the maximum gain is 110 dB. The gain control range achieves 50 dB provided by PGA and VGA. The receiver occupies an area of 1.875 mm × 1.575 mm including all needed voltage reference and the 1.8 V low dropout regulator.


2009 ◽  
Vol 18 (06) ◽  
pp. 1119-1136 ◽  
Author(s):  
S. M. REZAUL HASAN

This paper presents a novel low-voltage single stage CMOS RF Variable Gain Amplifier (RFVGA) designed in 130 nm IBM CMOS process technology using current feed-back gain-independent impedance matching. The proposed RFVGA has a nearly constant gain over the 400 MHz–1 GHz frequency band. Also, it has a 70 dB gain variation (-40 dB to 30 dB) which is decibel-linear within this frequency band for a control voltage in the range of 0.41 V–0.81 V. The RFVGA demonstrates high linearity (THD ≈ -60 dB) and noise immunity (average Noise Figure ≤ 6 dB). It has an input referred third-order intercept point (IIP3) of -1.5 dBm, and an input reflection coefficient (S11) under -8 dB within the frequency band of interest. Also, it dissipates around 5 mW using a 1.2 V power supply. Further, Monte Carlo simulations incorporating process, supply voltage and temperature variations (PVT variations) as well as mismatch between devices (based on width and length of devices) indicate that the design is quite robust. The proposed RFVGA is highly suitable for mobile digital television (DTV) tuner applications.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 804
Author(s):  
Gibeom Shin ◽  
Kyunghwan Kim ◽  
Kangseop Lee ◽  
Hyun-Hak Jeong ◽  
Ho-Jin Song

This paper presents a variable-gain amplifier (VGA) in the 68–78 GHz range. To reduce DC power consumption, the drain voltage was set to 0.5 V with competitive performance in the gain and the noise figure. High-Q shunt capacitors were employed at the gate terminal of the core transistors to move input matching points for easy matching with a compact transformer. The four stages amplifier fabricated in 40-nm bulk complementary metal oxide semiconductor (CMOS) showed a peak gain of 24.5 dB at 71.3 GHz and 3‑dB bandwidth of more than 10 GHz in 68–78 GHz range with approximately 4.8-mW power consumption per stage. Gate-bias control of the second stage in which feedback capacitances were neutralized with cross-coupled capacitors allowed us to vary the gain by around 21 dB in the operating frequency band. The noise figure was estimated to be better than 5.9 dB in the operating frequency band from the full electromagnetic (EM) simulation.


Sign in / Sign up

Export Citation Format

Share Document