Design and implementation of a multi-sensor robot system for printed circuit board insertion

Author(s):  
D. Sood ◽  
M.C. Repko ◽  
R.B. Kelley
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
J. L. Mazher Iqbal ◽  
Munagapati Siva Kishore ◽  
Arulkumaran Ganeshan ◽  
G. Narayan

In contrast to the existing electromechanical systems, the noncontact-type capacitive measurement allows for a chemically and mechanically isolated, continuous, and inherently wear-free measurement. Integration of the sensor directly into the container’s wall offers considerable savings potential because of miniaturization and installation efforts. This paper presents the implementation of noncontact (NC)-type level sensing techniques utilizing the Programmable System on Chip (PSoC). The hardware system developed based on the PSoC microcontroller is interfaced with capacitive-based printed circuit board (PCB) strip. The designer has the choice of placing the sensors directly on the container or close to it. This sensor technology can measure both the conductive and nonconductive liquids with equal accuracy.


Author(s):  
Riky Tri Yunardi ◽  
Moh. Zakky Zulfiar ◽  
Rr. Wanda Auruma Putri ◽  
Deny Arifianto

In the technology to create prototypes for electronic hardware is usually constructed using surface mount device printed circuit board (SMD PCB). In this paper introduces the design and implementation of low-cost electrical solder paste dispenser that supports the PCB solder process. The design consists of a nozzle and linear drive systems based on stepper motors operating with electric power to push the plunger down to drop the solder paste on the board. To test the performance of solder paste that has been designed verified by experiment. Solder paste dispenser design was tested using SMD resistor with the solder pads of different sizes for R0603, R0805, and R1206 on PCB. The results showed that the design of the prototype was able to put the pasta in various field pads between 0.54 mm2, 0.91 mm2 and 1.44 mm2 for standard solder pads with an error in the 2% - 5%. Based on the results, the device has been shown to potentially be used to attach electronic components to printed circuit boards.


2013 ◽  
Vol 401-403 ◽  
pp. 1547-1550
Author(s):  
Lai Ping Luo ◽  
Jing Zhang ◽  
Li Fang Zhu ◽  
Cheng Shui Liu ◽  
Xing Lin Hu

We propose a quality inspection integration platform to solve the general problems of inspection reports. This paper describes the technological process of quality inspection, the function design of integration platform, the key technology and the physical architecture. We create an integration platform in J2EE development environment. The platform is very effective for the work of quality inspection.


2012 ◽  
Vol 132 (6) ◽  
pp. 404-410 ◽  
Author(s):  
Kenichi Nakayama ◽  
Kenichi Kagoshima ◽  
Shigeki Takeda

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Author(s):  
Prabjit Singh ◽  
Ying Yu ◽  
Robert E. Davis

Abstract A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.


Sign in / Sign up

Export Citation Format

Share Document