Effect of Ag Sintered Bondline Thickness on High Temperature Reliability of SiC Power Devices

Author(s):  
Zhongyang Deng ◽  
Guisheng Zou ◽  
Qiang Jia ◽  
Bin Feng ◽  
Hongqiang Zhang ◽  
...  
2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


Author(s):  
Benjamin Bayer ◽  
Mario Groccia ◽  
Hoang Linh Bach ◽  
Christoph Friedrich Bayer ◽  
Andreas Schletz ◽  
...  

2013 ◽  
Vol 1538 ◽  
pp. 329-333 ◽  
Author(s):  
Lin Cheng ◽  
Michael J. O’Loughlin ◽  
Alexander V. Suvorov ◽  
Edward R. Van Brunt ◽  
Albert A. Burk ◽  
...  

ABSTRACTThis paper details the development of a technique to improve the minority carrier lifetime of 4H-SiC thick (≥ 100 μm) n-type epitaxial layers through multiple thermal oxidations. A steady improvement in lifetime is seen with each oxidation step, improving from a starting ambipolar carrier lifetime of 1.09 µs to 11.2 µs after 4 oxidation steps and a high-temperature anneal. This multiple-oxidation lifetime enhancement technique is compared to a single high-temperature oxidation step, and a carbon implantation followed by a high-temperature anneal, which are traditional ways to achieve high ambipolar lifetime in 4H-SiC n-type epilayers. The multiple oxidation treatment resulted in a high minimum carrier lifetime of 6 µs, compared to < 2 µs for other treatments. The implications of lifetime enhancement to high-voltage/high-current 4H-SiC power devices are also discussed.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000228-000235
Author(s):  
Cyril Buttay ◽  
Remi Robutel ◽  
Christian Martin ◽  
Christophe Raynaud ◽  
Simeon Dampieni ◽  
...  

The power devices needed to build a high-temperature converter (inductors, capacitors and active devices) have been stored at 200°C for up to 1000 hrs. Their characteristics have been monitored. Capacitors and magnetic materials from various manufacturers and technologies are tested, as well as silicon-carbide diodes. It is shown that by carefully choosing the components, it is possible to build a reliable power converter operating at high temperature.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000317-000325
Author(s):  
Sayan Seal ◽  
Brandon Passmore ◽  
Brice McPherson

Abstract The performance of SiC power devices has demonstrated superior characteristics as compared to conventional Silicon (Si) devices. Some of the advantages of SiC power devices over Si include higher voltage blocking capability, low specific on-resistance, high switching frequency, high temperature operation, and high power density. Thus, SiC modules are capable of processing significant levels of power within much smaller volumes compared with its Si counterparts. These high thermal loads present a formidable challenge in integrating SiC devices in power modules. For example, known-good materials and processes for silicon power modules are not rated at the aggressive operating conditions associated with SiC devices. Two of the most critical interfaces in a power electronics module are the die-attach and substrate- attach. A degradation in these interfaces often results in potentially catastrophic electrical and thermal failure. Therefore, it is very important to thoroughly evaluate die-attach materials before implementing them in SiC power modules. This paper presents the methodology for the evaluation of die attach materials for SiC power modules. Preforms of a lead-free high-temperature attach material were used to perform a die and substrate attach process on a conventional power module platform. The initial attach quality was inspected using non- destructive methods consisting of acoustic microscopy and x-ray scanning. Die attach and substrate attach voiding of &lt; 5% was obtained indicating a very good attach quality. Cross-sectioning techniques were used to validate the inspection methods. The initial attach strength was measured using pull tests and shear tests. The measurements were repeated at the rated temperature of the module to ensure that the properties did not degrade excessively at the service temperature. At the rated module temperature of 175 °C, the die bonding strength was found to be ~ 75 kg. This was only 25% lower than the strength at room temperature. In addition, the contact pull strength was measured to be &gt; 90 kg at 175 °C, which was 25% lower than the value measured at room temperature. The effect of power cycling and thermal cycling on the quality and strength of the die and substrate attach layers was also investigated.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000254-000259 ◽  
Author(s):  
Fumiki Kato ◽  
Fengqun Lang ◽  
Simanjorang Rejeki ◽  
Hiroshi Nakagawa ◽  
Hiroshi Yamaguchi ◽  
...  

In this work, a novel precise chip joint method using sub-micron Au particle for high-density silicon carbide (SiC) power module operating at high temperature is proposed. A module structure of SiC power devices are sandwiched between two silicon nitride-active metal brazed copper (SiN-AMC) circuit boards. To make a precise position and height control of the chip bonding, the top side (gate/source or anode pad side) of SiC power devices are flip-chip bonded to circuit electrodes using sub-micron Au particle with low temperature (250°C) and pressure-less sintering. The accuracy of the bonding position of chips was less than 10 μm and the accuracy of the height after bonding chips was less than 15 μm. Mechanical shear fatigue tests for flip-chip bonded SiC Schottky barrier diode (SBD) were carried out. As a result, initial shear strength of the joint was 36 MPa. The shear strength of 43 MPa is obtained after storage life test (500 hours at 250°C), and also 35 MPa is obtained even after thermal cycle stress test (1000 cycles between −40°C and 250°C). The flip-chip bonding of SiC-JFET is successfully realizedon the substrate without short or open failure electrically. Finally we joint the backside of the SiC-JFET (drain side) and the SiC-SBD (cathode side) to each circuit electrodes at once by means of reflow process with Au-12%Ge solder. The structured sandwich SiC power module was also successfully formed.


2014 ◽  
Vol 778-780 ◽  
pp. 1122-1125 ◽  
Author(s):  
Thibaut Chailloux ◽  
Cyril Calvez ◽  
Nicolas Thierry-Jebali ◽  
Dominique Planson ◽  
Dominique Tournier

The aim of this study consists in comparing the effects of temperature on various SiC power devices. Electrical characteristics have been measured for temperatures from 100K to 525K. All devices are suitable for high temperature. However, SiC MOSFETs are not a good choice for cryogenic temperature, while SiC BJTs are less affected by temperature than other components, especially for cryogenic temperature.


Sign in / Sign up

Export Citation Format

Share Document