Evolution of value addition process for generation of Normalised Difference Vegetation Index (NDVI) product – A case study

Author(s):  
A Hyndavi ◽  
Latha James ◽  
R V G Anjaneyulu ◽  
S Suresh ◽  
C Venkateswara Rao ◽  
...  
Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 61
Author(s):  
Katherine James ◽  
Caroline J. Nichol ◽  
Tom Wade ◽  
Dave Cowley ◽  
Simon Gibson Poole ◽  
...  

In intensively cultivated landscapes, many archaeological remains are buried under the ploughed soil, and detection depends on crop proxies that express subsurface features. Traditionally these proxies have been documented in visible light as contrasting areas of crop development commonly known as cropmarks. However, it is recognised that reliance on the visible electromagnetic spectrum has inherent limitations on what can be documented, and multispectral and thermal sensors offer the potential to greatly improve our ability to detect buried archaeological features in agricultural fields. The need for this is pressing, as ongoing agricultural practices place many subsurface archaeological features increasingly under threat of destruction. The effective deployment of multispectral and thermal sensors, however, requires a better understanding of when they may be most effective in documenting archaeologically induced responses. This paper presents the first known use of the FLIR Vue Pro-R thermal imager and Red Edge-M for exploring crop response to archaeological features from two UAV surveys flown in May and June 2019 over a known archaeological site. These surveys provided multispectral imagery, which was used to create vegetation index (VI) maps, and thermal maps to assess their effectiveness in detecting crop responses in the temperate Scottish climate. These were visually and statistically analysed using a Mann Whitney test to compare temperature and reflectance values. While the study was compromised by unusually damp conditions which reduced the potential for cropmarking, the VIs (e.g., Normalised Difference Vegetation Index, NDVI) did show potential to detect general crop stress across the study site when they were statistically analysed. This demonstrates the need for further research using multitemporal data collection across case study sites to better understand the interactions of crop responses and sensors, and so define appropriate conditions for large-area data collection. Such a case study-led multitemporal survey approach is an ideal application for UAV-based documentation, especially when “perfect” conditions cannot be guaranteed.


2021 ◽  
Vol 13 (16) ◽  
pp. 3339
Author(s):  
Matthew Nigel Lawton ◽  
Belén Martí-Cardona ◽  
Alex Hagen-Zanker

Accurate detection of spatial patterns of urban growth is crucial to the analysis of urban growth processes. A common practice is to use post-classification change analysis, overlaying multiple independently derived land cover layers. This approach is problematic as propagation of classification errors can lead to overestimation of change by an order of magnitude. This paper contributes to the growing literature on change classification using pixel-based time series analysis. In particular, we have developed a method that identifies change in the urban fabric at the pixel level based on breaks in the seasonal and year-on-year trend of the normalised difference vegetation index (NDVI). The method is applied to a case study area in the south of England that is characterised by high levels of cloud cover. The study uses the Landsat data archive over the period 1984–2018. The performance of the method was assessed using 500 ground truth points. These points were randomly selected and manually assessed for change using high-resolution earth observation imagery. The method identifies pixels where a land cover change occurred with a user’s accuracy of change 45.3 ± 4.45% and outperforms a post-classification analysis of an otherwise more advanced land cover product, which achieved a user’s accuracy of 17.8 ± 3.42%. This method performs better where changes exhibit large differences in NDVI dynamics amongst land cover types, such as the transition from agricultural to suburban, and less so where small differences of NDVI are observed, such as changes in land cover within pixels that are densely built up already. The method proved relatively robust for outliers and missing data, for example, in the case of high levels of cloud cover, but does rely on a period of data availability before and after the change event. Future developments to improve the method are to incorporate spectral information other than NDVI and to consider multiple change events per pixel over the analysed period.


2020 ◽  
Vol 12 (17) ◽  
pp. 2760
Author(s):  
Gourav Misra ◽  
Fiona Cawkwell ◽  
Astrid Wingler

Remote sensing of plant phenology as an indicator of climate change and for mapping land cover has received significant scientific interest in the past two decades. The advancing of spring events, the lengthening of the growing season, the shifting of tree lines, the decreasing sensitivity to warming and the uniformity of spring across elevations are a few of the important indicators of trends in phenology. The Sentinel-2 satellite sensors launched in June 2015 (A) and March 2017 (B), with their high temporal frequency and spatial resolution for improved land mapping missions, have contributed significantly to knowledge on vegetation over the last three years. However, despite the additional red-edge and short wave infra-red (SWIR) bands available on the Sentinel-2 multispectral instruments, with improved vegetation species detection capabilities, there has been very little research on their efficacy to track vegetation cover and its phenology. For example, out of approximately every four papers that analyse normalised difference vegetation index (NDVI) or enhanced vegetation index (EVI) derived from Sentinel-2 imagery, only one mentions either SWIR or the red-edge bands. Despite the short duration that the Sentinel-2 platforms have been operational, they have proved their potential in a wide range of phenological studies of crops, forests, natural grasslands, and other vegetated areas, and in particular through fusion of the data with those from other sensors, e.g., Sentinel-1, Landsat and MODIS. This review paper discusses the current state of vegetation phenology studies based on the first five years of Sentinel-2, their advantages, limitations, and the scope for future developments.


Author(s):  
Yuping Dong ◽  
Helin Liu ◽  
Tianming Zheng

Asthma is a chronic inflammatory disease that can be caused by various factors, such as asthma-related genes, lifestyle, and air pollution, and it can result in adverse impacts on asthmatics’ mental health and quality of life. Hence, asthma issues have been widely studied, mainly from demographic, socioeconomic, and genetic perspectives. Although it is becoming increasingly clear that asthma is likely influenced by green spaces, the underlying mechanisms are still unclear and inconsistent. Moreover, green space influences the prevalence of asthma concurrently in multiple ways, but most existing studies have explored only one pathway or a partial pathway, rather than the multi-pathways. Compared to greenness (measured by Normalized Difference Vegetation Index, tree density, etc.), green space structure—which has the potential to impact the concentration of air pollution and microbial diversity—is still less investigated in studies on the influence of green space on asthma. Given this research gap, this research took Toronto, Canada, as a case study to explore the two pathways between green space structure and the prevalence of asthma based on controlling the related covariates. Using regression analysis, it was found that green space structure can protect those aged 0–19 years from a high risk of developing asthma, and this direct protective effect can be enhanced by high tree diversity. For adults, green space structure does not influence the prevalence of asthma unless moderated by tree diversity (a measurement of the richness and diversity of trees). However, this impact was not found in adult females. Moreover, the hypothesis that green space structure influences the prevalence of asthma by reducing air pollution was not confirmed in this study, which can be attributed to a variety of causes.


2012 ◽  
Vol 34 (1) ◽  
pp. 103 ◽  
Author(s):  
Z. M. Hu ◽  
S. G. Li ◽  
J. W. Dong ◽  
J. W. Fan

The spatial annual patterns of aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of the rangelands of the Inner Mongolia Autonomous Region of China, a region in which several projects for ecosystem restoration had been implemented, are described for the years 1998–2007. Remotely sensed normalised difference vegetation index and ANPP data, measured in situ, were integrated to allow the prediction of ANPP and PUE in each 1 km2 of the 12 prefectures of Inner Mongolia. Furthermore, the temporal dynamics of PUE and ANPP residuals, as indicators of ecosystem deterioration and recovery, were investigated for the region and each prefecture. In general, both ANPP and PUE were positively correlated with mean annual precipitation, i.e. ANPP and PUE were higher in wet regions than in arid regions. Both PUE and ANPP residuals indicated that the state of the rangelands of the region were generally improving during the period of 2000–05, but declined by 2007 to that found in 1999. Among the four main grassland-dominated prefectures, the recovery in the state of the grasslands in the Erdos and Chifeng prefectures was highest, and Xilin Gol and Chifeng prefectures was 2 years earlier than Erdos and Hunlu Buir prefectures. The study demonstrated that the use of PUE or ANPP residuals has some limitations and it is proposed that both indices should be used together with relatively long-term datasets in order to maximise the reliability of the assessments.


2021 ◽  
Author(s):  
Wildan S. Adwin Pratama ◽  
Pegi Melati ◽  
Dipa U. Nancah ◽  
Filman Firdausman ◽  
Rizky Satriawan ◽  
...  

2014 ◽  
Vol 36 (2) ◽  
pp. 185 ◽  
Author(s):  
Fang Chen ◽  
Keith T. Weber

Changes in vegetation are affected by many climatic factors and have been successfully monitored through satellite remote sensing over the past 20 years. In this study, the Normalised Difference Vegetation Index (NDVI), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite, was selected as an indicator of change in vegetation. Monthly MODIS composite NDVI at a 1-km resolution was acquired throughout the 2004–09 growing seasons (i.e. April–September). Data describing daily precipitation and temperature, primary factors affecting vegetation growth in the semiarid rangelands of Idaho, were derived from the Surface Observation Gridding System and local weather station datasets. Inter-annual and seasonal fluctuations of precipitation and temperature were analysed and temporal relationships between monthly NDVI, precipitation and temperature were examined. Results indicated NDVI values observed in June and July were strongly correlated with accumulated precipitation (R2 >0.75), while NDVI values observed early in the growing season (May) as well as late in the growing season (August and September) were only moderately related with accumulated precipitation (R2 ≥0.45). The role of ambient temperature was also apparent, especially early in the growing season. Specifically, early growing-season temperatures appeared to significantly affect plant phenology and, consequently, correlations between NDVI and accumulated precipitation. It is concluded that precipitation during the growing season is a better predictor of NDVI than temperature but is interrelated with influences of temperature in parts of the growing season.


2018 ◽  
Vol 40 (2) ◽  
pp. 113 ◽  
Author(s):  
Miao Bailing ◽  
Li Zhiyong ◽  
Liang Cunzhu ◽  
Wang Lixin ◽  
Jia Chengzhen ◽  
...  

Drought frequency and intensity have increased in recent decades, with consequences for the structure and function of ecosystems of the Inner Mongolian Plateau. In this study, the Palmer drought severity index (PDSI) was chosen to assess the extent and severity of drought between 1982 and 2011. The normalised difference vegetation index (NDVI) was used to analyse the responses of five different vegetation types (forest, meadow steppe, typical steppe, desert steppe and desert) to drought. Our results show that during the last 30 years, the frequency and intensity of droughts have increased significantly, especially in summer and autumn. The greatest decline in NDVI in response to drought was observed in typical steppe and desert steppe vegetation types. Compared with other seasons, maximum decline in NDVI was observed in summer. In addition, we found that NDVI in the five vegetation types showed a lag time of 1–2 months from drought in the spring and summer. Ancillary soil moisture conditions influenced the drought response, with desert steppe showing a stronger lag effect to spring and summer drought than the other vegetation types. Our results show that drought explains a high proportion of changes in NDVI, and suggest that recent climate change has been an important factor affecting vegetation productivity in the area.


2015 ◽  
Vol 10 (4) ◽  
pp. 215 ◽  
Author(s):  
Roberta Rossi ◽  
Alessio Pollice ◽  
Gianfranco Bitella ◽  
Rocco Bochicchio ◽  
Amedeo D'Antonio ◽  
...  

Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER) and plant productivity in an alfalfa (<em>Medicago sativa</em> L.) field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI) at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam), gravel content (0 to 55%) and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.


Sign in / Sign up

Export Citation Format

Share Document