Temporal and spatial heterogeneity of drought impact on vegetation growth on the Inner Mongolian Plateau

2018 ◽  
Vol 40 (2) ◽  
pp. 113 ◽  
Author(s):  
Miao Bailing ◽  
Li Zhiyong ◽  
Liang Cunzhu ◽  
Wang Lixin ◽  
Jia Chengzhen ◽  
...  

Drought frequency and intensity have increased in recent decades, with consequences for the structure and function of ecosystems of the Inner Mongolian Plateau. In this study, the Palmer drought severity index (PDSI) was chosen to assess the extent and severity of drought between 1982 and 2011. The normalised difference vegetation index (NDVI) was used to analyse the responses of five different vegetation types (forest, meadow steppe, typical steppe, desert steppe and desert) to drought. Our results show that during the last 30 years, the frequency and intensity of droughts have increased significantly, especially in summer and autumn. The greatest decline in NDVI in response to drought was observed in typical steppe and desert steppe vegetation types. Compared with other seasons, maximum decline in NDVI was observed in summer. In addition, we found that NDVI in the five vegetation types showed a lag time of 1–2 months from drought in the spring and summer. Ancillary soil moisture conditions influenced the drought response, with desert steppe showing a stronger lag effect to spring and summer drought than the other vegetation types. Our results show that drought explains a high proportion of changes in NDVI, and suggest that recent climate change has been an important factor affecting vegetation productivity in the area.

2012 ◽  
Vol 43 (1-2) ◽  
pp. 91-101 ◽  
Author(s):  
Xiaofan Liu ◽  
Liliang Ren ◽  
Fei Yuan ◽  
Jing Xu ◽  
Wei Liu

In order to better understand the relationship between vegetation vigour and moisture availability, a correlation analysis based on different vegetation types was conducted between time series of monthly Normalized Difference Vegetation Index (NDVI) and Palmer Drought Severity Index (PDSI) during the growing season from April to October within the Laohahe catchment. It was found that NDVI had good correlation with PDSI, especially for shrub and grass. The correlation between NDVI and PDSI varies significantly from one month to another. The highest value of correlation coefficients appears in June when the vegetation is growing; lower correlations are noted at the end of growing season for all vegetation types. The influence of meteorological drought on vegetation vigour is stronger in the first half of the growing season, before the vegetation reaches the peak greenness. In order to take the seasonal effect into consideration, a regression model with seasonal dummy variables was used to simulate the relationship between NDVI and PDSI. The results showed that the NDVI–PDSI relationship is significant (α = 0.05) within the growing season, and that NDVI is an effective indicator to monitor and detect droughts if seasonal timing is taken into account.


2018 ◽  
Vol 40 (2) ◽  
pp. 205
Author(s):  
Xu-Juan Cao ◽  
Qing-Zhu Gao ◽  
Ganjurjav Hasbagan ◽  
Yan Liang ◽  
Wen-Han Li ◽  
...  

Climate change will affect how the Normalised Difference Vegetation Index (NDVI), which is correlated with climate factors, varies in space and over time. The Mongolian Plateau is an arid and semi-arid area, 64% covered by grassland, which is extremely sensitive to climate change. Its climate has shown a warming and drying trend at both annual and seasonal scales. We analysed NDVI and climate variation characteristics and the relationships between them for Mongolian Plateau grasslands from 1981 to 2013. The results showed spatial and temporal differences in the variation of NDVI. Precipitation showed the strongest correlation with NDVI (43% of plateau area correlated with total annual precipitation and 44% with total precipitation in the growing season, from May to September), followed by potential evapotranspiration (27% annual, and 30% growing season), temperature (7% annual, 16% growing season) and cloud cover (10% annual, 12% growing season). These findings confirm that moisture is the most important limiting factor for grassland vegetation growth on the Mongolian Plateau. Changes in land use help to explain variations in NDVI in 40% of the plateau, where no correlation with climate factors was found. Our results indicate that vegetation primary productivity will decrease if warming and drying trends continue but decreases will be less substantial if further warming, predicted as highly likely, is not accompanied by further drying, for which predictions are less certain. Continuing spatial and temporal variability can be expected, including as a result of land use changes.


2019 ◽  
Vol 11 (12) ◽  
pp. 3256 ◽  
Author(s):  
Jie Yang ◽  
Zhiqiang Wan ◽  
Suld Borjigin ◽  
Dong Zhang ◽  
Yulong Yan ◽  
...  

Normalized difference vegetation index (NDVI) is commonly used to indicate vegetation density and condition. NDVI was mostly correlated with climate factors. We analyzed changing trends of NDVI in different types of grassland in Inner Mongolia and the response of NDVI to climatic variation from 1982 to 2011. NDVI of meadow steppe increased significantly in spring while it decreased in other seasons. The annual mean NDVI in typical steppe and desert steppe increased significantly in the last 30a. However, in the greatest area of steppe desert, the NDVI had no significant change in summer, autumn, and the growing season. In meadow steppe, typical steppe, and desert steppe, the area showed a positive correlation of NDVI to temperature as highest in spring compared to other seasons, because warming in spring is beneficial to the plant growth. However, in the greatest area of steppe desert, the correlation of NDVI to temperature was not significant. The NDVI was positively correlated to precipitation in four types of grassland. In the steppe desert, the precipitation had no significant effect on the NDVI due to the poor vegetation cover in this region. The NDVI was not significantly correlated to the precipitation in autumn because of vegetation withering in the season and not need precipitation. Precipitation was a more important factor rather than temperature to NDVI in the region. The response of NDVI to temperature and precipitation in different seasons should be studied in more detail and the effect of other factors on NDVI should be considered in future research.


2019 ◽  
Vol 19 (6) ◽  
pp. 1189-1213 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Marina Peña-Gallardo ◽  
Miquel Tomas-Burguera ◽  
Fernando Domínguez-Castro ◽  
...  

Abstract. Drought is a major driver of vegetation activity in Spain, with significant impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the sensitivity of vegetation to drought conditions differs largely amongst vegetation types and climates. We used a high-resolution (1.1 km) spatial dataset of the normalized difference vegetation index (NDVI) for the whole of Spain spanning the period from 1981 to 2015, combined with a dataset of the standardized precipitation evapotranspiration index (SPEI) to assess the sensitivity of vegetation types to drought across Spain. Specifically, this study explores the drought timescales at which vegetation activity shows its highest response to drought severity at different moments of the year. Results demonstrate that – over large areas of Spain – vegetation activity is controlled largely by the interannual variability of drought. More than 90 % of the land areas exhibited statistically significant positive correlations between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions. In comparison to other climatic regions across Spain, results indicate that vegetation types located in arid regions showed the strongest response to drought. Importantly, this study stresses that the timescale at which drought is assessed is a dominant factor in understanding the different responses of vegetation activity to drought.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  

Coniferous forests cover the mountains in many parts of Central Asia and provide large potentials for dendroclimatic studies of past climate variability. However, to date, only a few tree-ring based climate reconstructions exist from this region. Here, we present a regional tree-ring chronology from the moisture-sensitive Zeravshan juniper (Juniperus seravschanica Kom.) from the Kuramin Range (Tajikistan) in western Central Asia, which is used to reveal past summer drought variability from 1650 to 2015 Common Era (CE). The chronology accounts for 40.5% of the variance of the June–July self-calibrating Palmer Drought Severity Index (scPDSI) during the instrumental period (1901 to 2012). Seven dry periods, including 1659–1696, 1705–1722, 1731–1741, 1758–1790, 1800–1842, 1860–1875, and 1931–1987, and five wet periods, including 1742–1752, 1843–1859, 1876–1913, 1921–1930, and 1988–2015, were identified. Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals and capture the regional dry/wet periods of Central Asia. Moreover, the spectral analysis indicates the existence of centennial (128 years), decadal (24.3 and 11.4 years), and interannual (8.0, 3.6, 2.9, and 2.0 years) cycles, which may be linked with climate forces, such as solar activity and El Niño-Southern Oscillation (ENSO). The analysis between the scPDSI reconstruction and large-scale atmospheric circulations during the reconstructed extreme dry and wet years can provide information about the linkages of extremes in our scPDSI record with the large-scale ocean–atmosphere–land circulation systems.


Author(s):  
Malak Henchiri ◽  
Qi Liu ◽  
Bouajila Essifi ◽  
Shahzad Ali ◽  
Wilson Kalisa ◽  
...  

North and West Africa are the most vulnerable regions to drought, due to the high variation in monthly precipitation. An accurate and efficient monitoring of drought is essential. In this study, we use TRMM data with remote sensing tools for effective monitoring of drought. The Drought Severity Index (DSI), Temperature Vegetation Drought Index (TVDI), Normalized Difference Vegetation Index (NDVI), and Normalized Vegetation Supply Water Index (NVSWI) are more useful for monitoring the drought over North and West Africa. To classify the areas affected by drought, we used the TRMM spatial maps to verify the TVDI, DSI and NVSWI indexes derived from MODIS. The DSI, TVDI, NVSWI and Monthly Precipitation Anomaly (NPA) indexes with the employ of MODIS-derived ET/PET and NDVI were chosen for monitoring the drought in the study area. The seasonal spatial correlation between the DSI, NPA, NVWSI, NDVI, TVDI and TCI indicates that NVSWI, NDVI and DSI present an excellent monitor of drought indexes. The change trend of drought from 2002 to 2018 was also characterized. The frequency of drought showed a decrease during this period.


2019 ◽  
Vol 11 (24) ◽  
pp. 2902 ◽  
Author(s):  
Chunyu Dong ◽  
Glen MacDonald ◽  
Gregory S. Okin ◽  
Thomas W. Gillespie

A combination of drought and high temperatures (“global-change-type drought”) is projected to become increasingly common in Mediterranean climate regions. Recently, Southern California has experienced record-breaking high temperatures coupled with significant precipitation deficits, which provides opportunities to investigate the impacts of high temperatures on the drought sensitivity of Mediterranean climate vegetation. Responses of different vegetation types to drought are quantified using the Moderate Resolution Imaging Spectroradiometer (MODIS) data for the period 2000–2017. The contrasting responses of the vegetation types to drought are captured by the correlation and regression coefficients between Normalized Difference Vegetation Index (NDVI) anomalies and the Palmer Drought Severity Index (PDSI). A novel bootstrapping regression approach is used to decompose the relationships between the vegetation sensitivity (NDVI–PDSI regression slopes) and the principle climate factors (temperature and precipitation) associated with the drought. Significantly increased sensitivity to drought in warmer locations indicates the important role of temperature in exacerbating vulnerability; however, spatial precipitation variations do not demonstrate significant effects in modulating drought sensitivity. Based on annual NDVI response, chaparral is the most vulnerable community to warming, which will probably be severely affected by hotter droughts in the future. Drought sensitivity of coastal sage scrub (CSS) is also shown to be very responsive to warming in fall and winter. Grassland and developed land will likely be less affected by this warming. The sensitivity of the overall vegetation to temperature increases is particularly concerning, as it is the variable that has had the strongest secular trend in recent decades, which is expected to continue or strengthen in the future. Increased temperatures will probably alter vegetation distribution, as well as possibly increase annual grassland cover, and decrease the extent and ecological services provided by perennial woody Mediterranean climate ecosystems as well.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1209
Author(s):  
David Romero ◽  
Eric Alfaro ◽  
Roger Orellana ◽  
Maria-Engracia Hernandez Cerda

The main climatic indices used for the determination of pre-summer drought severity were developed for temperate zones with very different climatic conditions from those found in the tropical climate zones, particularly with respect to seasonal rainfall variations. The temporal evolution of pre-summer drought leads the authors to compute the indices for each year over a defined period according to the climatic normals of each meteorological station and to consider the months inside the dry episode differently, according to the law of emptying the water reserves. As a function of this, standardized drought indices are proposed for the evaluation of the pre-summer drought in tropical zone. Two new indices were tested: one developed from precipitation and the other also considering temperature. These indices were validated by correlation with Advanced very-high-resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) time series and used to identify the most severe drought conditions in the Yucatan Peninsula. The comparison between the indices and their temporal variations highlighted the importance of temperature in the most critical events and left indications of the impact of global warming on the phenomenon.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Changdi Xue ◽  
Hua Wu ◽  
Xiaoguang Jiang

Drought is a worldwide natural disaster with a wide range of influences and a long duration, which has a huge impact on the agricultural production activities and social economy of local residents. The Belt and Road Initiative has always received much attention due to its special geographical location and great potential for economic development. At the same time, the Belt and Road region is also deeply affected by drought, especially in some countries and regions, where the agricultural infrastructure is weak and the ecological environment is fragile. How to effectively monitor and evaluate drought has become an urgent problem to be solved. In this study, the ERA5 atmospheric reanalysis data were used, and the self-calibrating Palmer Drought Severity Index was combined with Breaks for Additive Seasonal and Trend (BFAST) to study the temporal and spatial distribution of the 1989–2017 monthly scale of drought in different climate regions of the Belt and Road region. The results show that the overall change trend of arid area shows a change of “up-down-up-down.” The winter drought area is larger than the summer drought area, and the drought center gradually moves from the Southeast Asia region in winter to the West–Central Asia region in summer. In the past five years, the drought area decreased gradually at the rate of approximately 0.38 million km2 per year.


2020 ◽  
Vol 12 (23) ◽  
pp. 3940
Author(s):  
Claudiu-Valeriu Angearu ◽  
Irina Ontel ◽  
George Boldeanu ◽  
Denis Mihailescu ◽  
Argentina Nertan ◽  
...  

The aim of this study is to analyze the performance of the Drought Severity Index (DSI) in Romania and its validation based on other data sources (meteorological data, soil moisture content (SMC), agricultural production). Also, it is to assess the drought based on a multi-temporal analysis and trends of the DSI obtained from Terra MODIS satellite images. DSI is a standardized product based on evapotranspiration (ET) and the Normalized Difference Vegetation Index (NDVI), highlighting the differences over a certain period of time compared to the average. The study areas are located in Romania: three important agricultural lands (Oltenia Plain, Baragan Plain and Banat Plain), which have different environmental characteristics. MODIS products have been used over a period of 19 years (2001–2019) during the vegetation season of the agricultural crops (April–September). The results point out that those agricultural areas from the Baragan Plain and Oltenia Plain were more affected by drought than those from Banat Plain, especially in the years 2002, 2007 and 2012. Also, the drought intensity and the agricultural surfaces affected by drought decreased in the first part of the vegetation season (March–May) and increased in the last part (August–September) in all three study areas analyzed. All these results are confirmed by those of the Standardized Precipitation Evapotranspiration Index (SPEI) and Soil Moisture Anomaly (SMA) indices.


Sign in / Sign up

Export Citation Format

Share Document