Analog macromodeling of capacitive coupling faults in digital circuit interconnects

Author(s):  
A.D. Sathe ◽  
M.L. Bushnell ◽  
V.D. Agrawal
2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhiyu Wang ◽  
Shun Wang ◽  
Guangyou Fang ◽  
Qunying Zhang

Nonpolarizable electrodes are applied widely in the electric field measurement for geophysical surveys. However, there are two major problems: (1) systematic errors caused by poor electrical contact in the high resistive terrains and (2) environmental damage associated with using nonpolarizable electrodes. A new alternative structure of capacitive electrode, which is capable of sensing surface potential through weak capacitive coupling, is presented to solve the above problems. A technique is introduced to neutralize distributed capacitance and input capacitance of the detection circuit. With the capacitance neutralization technique, the transmission coefficient of capacitive electrode remains stable when environmental conditions change. The simulation and field test results indicate that the new capacitive electrode has an operating bandwidth range from 0.1 Hz to 1 kHz. The capacitive electrodes have a good prospect of the applications in geophysical prospecting, especially in resistive terrains.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1420
Author(s):  
Chuanfu Wang ◽  
Yi Di ◽  
Jianyu Tang ◽  
Jing Shuai ◽  
Yuchen Zhang ◽  
...  

Dynamic degradation occurs when chaotic systems are implemented on digital devices, which seriously threatens the security of chaos-based pseudorandom sequence generators. The chaotic degradation shows complex periodic behavior, which is often ignored by designers and seldom analyzed in theory. Not knowing the exact period of the output sequence is the key problem that affects the application of chaos-based pseudorandom sequence generators. In this paper, two cubic chaotic maps are combined, which have symmetry and reconfigurable form in the digital circuit. The dynamic behavior of the cubic chaotic map and the corresponding digital cubic chaotic map are analyzed respectively, and the reasons for the complex period and weak randomness of output sequences are studied. On this basis, the digital cubic chaotic map is optimized, and the complex periodic behavior is improved. In addition, a reconfigurable pseudorandom sequence generator based on the digital cubic chaotic map is constructed from the point of saving consumption of logical resources. Through theoretical and numerical analysis, the pseudorandom sequence generator solves the complex period and weak randomness of the cubic chaotic map after digitization and makes the output sequence have better performance and less resource consumption, which lays the foundation for applying it to the field of secure communication.


Author(s):  
Zdenek Kolka ◽  
Viera Biolkova ◽  
Otakar Wilfert ◽  
Dalibor Biolek ◽  
Michal Kubicek ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 27
Author(s):  
Chuanyan Hao ◽  
Anqi Zheng ◽  
Yuqi Wang ◽  
Bo Jiang

In the information age, MOOCs (Massive Open Online Courses), micro-classes, flipping classroom, and other blended teaching scenes have improved students learning outcomes. However, incorporating technologies into experimental courses, especially electronic and electrical experiments, has its own characteristics and difficulties. The focus of this paper is to introduce virtual technology into an electronic circuit experiment course and to explore its teaching strategy, thereby realizing the informatization of experiment teaching. First, this paper explores the design concepts and implementation details of the digital circuit virtual laboratory, which is then developed based on previous literature and a prequestionnaire to users. Second, the informatization process of the experiment learning model based on traditional custom lab benches is shown through a blended learning scheme that integrates the online virtual laboratory. Finally, the experiment information system is verified and analyzed with a control group experiment and questionnaires. The blended program turned out to be an effective teaching model to complement the deficiencies in existing physical laboratories. The research conclusions show that the virtual experiment system provides students with a rich, efficient, and expansive experimental experience, in particular, the flexibility, repeatability, and visual appeal of a virtual platform could promote the development of students’ abilities in active learning, reflective thinking, and creativity.


Sign in / Sign up

Export Citation Format

Share Document