Detection of gate oxide and channel degradation in SiC power MOSFETs using reflectometry

Author(s):  
Abu Hanif ◽  
Sourov Roy ◽  
Faisal Khan
1995 ◽  
Vol 35 (3) ◽  
pp. 603-608 ◽  
Author(s):  
S.R. Anderson ◽  
R.D. Schrimpf ◽  
K.F. Galloway ◽  
J.L. Titus

2021 ◽  
Author(s):  
Tianshi Liu ◽  
Shengnan Zhu ◽  
Michael Jin ◽  
Limeng Shi ◽  
Marvin H. White ◽  
...  

2018 ◽  
Vol 924 ◽  
pp. 735-738 ◽  
Author(s):  
Selamnesh Nida ◽  
Thomas Ziemann ◽  
Bhagyalakshmi Kakarla ◽  
Ulrike Grossner

When power MOSFETs experience a voltage spike initiating avalanche generation, a large amount of power is dissipated at the device junction. This leads to self-heating and lowers the threshold voltage. Some sources indicate that unintended opening of the channel creates a positive feedback, thereby increasing heat generation and leading to thermal runaway. Therefore, keeping MOSFETs off by applying a negative gate bias should improve avalanche ruggedness. In this report, this claim is investigated by comparing single pulse avalanche ruggedness of commercial 1.2 kV, 80 mΩ planar and trench MOSFETs at -10 V and 0 V off-state gate bias. Both planar and trench devices show a small increase in their breakdown voltage with negative gate bias. However, there is no significant difference in avalanche withstanding energy. Even in investigated trench gate devices where the gate oxide is susceptible to interface as well as oxide defects, keeping the gate voltage at VGS = -10 V did not result in improvements in ruggedness.


2000 ◽  
Vol 640 ◽  
Author(s):  
Sei-Hyung Ryu ◽  
Anant K. Agarwal ◽  
Nelson S. Saks ◽  
Mrinal K. Das ◽  
Lori A. Lipkin ◽  
...  

ABSTRACTThis paper discusses the design and process issues of high voltage power DiMOSFETs (Double implanted MOSFETs) in 4H-silicon carbide (SiC). Since Critical Field (EC) in 4H-SiC is very high (10X higher than that of a Si), special care is needed to protect the gate oxide. 2D device simulation tool was used to determine the optimal JFET gap, which provides adequate gate oxide protection as well as a reasonable JFET resistance. The other issue in 4H-SiC DiMOSFETs is extremely low effective channel mobility (μeff) in the implanted p-well regions. NO anneal of the gate oxide and buried channel structure are used for increasing μeff. NO anneal, which was reported to be very effective in increasing the μeff of SiC MOSFETS in p-type epilayers, did not produce reasonable μeff of SiC MOSFETs in the implanted p-well. Buried channel (BC) structure with 2.7×1012 cm−2 charge in the channel showed high μeff utilizing bulk buried channel, but resulted in a normally-on device. However, it was shown that by controlling the charge in the BC layer, a normally off device with high μeff can be produced. A 3.3 mm × 3.3 mm DiMOSFET with BC structure showed a drain current of 10 A, which is the highest current reported in SiC power MOSFETs to date, at a forward drop of 4.4 V with a gate bias of only 2.5 V.


2017 ◽  
Vol 897 ◽  
pp. 537-540
Author(s):  
Victor Soler ◽  
Maria Cabello ◽  
Maxime Berthou ◽  
Josep Montserrat ◽  
José Rebollo ◽  
...  

SiC planar VDMOS of three voltages ratings (1.7kV, 3.3kV and 4.5kV) have been fabricated using a Boron diffusion process into the thermal gate oxide for improving the SiO2/SiC interface quality. Experimental results show a remarkable increase of the effective channel mobility which increases the device current capability, especially at room temperatures. At high temperatures, the impact of the Boron treatment is lower since the major contribution of the drift layer to the on-resistance. In addition, the intrinsic body diode characteristics approximate to that of an ideal PiN diode, and the blocking capability is not compromised by the use of Boron for the gate oxide formation.


2016 ◽  
Vol 63 (9) ◽  
pp. 3605-3613 ◽  
Author(s):  
Zakariae Chbili ◽  
Asahiko Matsuda ◽  
Jaafar Chbili ◽  
Jason T. Ryan ◽  
Jason P. Campbell ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document