scholarly journals Going with the membrane flow: the impact of polarized secretion on bulk plasma membrane flows

FEBS Journal ◽  
2021 ◽  
Author(s):  
Veneta Gerganova ◽  
Sophie G. Martin
2021 ◽  
Vol 10 (10) ◽  
pp. 2144
Author(s):  
Milosz Pietrus ◽  
Kazimierz Pitynski ◽  
Marcin Waligora ◽  
Katarzyna Milian-Ciesielska ◽  
Monika Bialon ◽  
...  

Background: (1) Endometrial cancer is one of the most common cancers affecting women, with a growing incidence. To better understand the different behaviors associated with endometrial cancer, it is necessary to understand the changes that occur at a molecular level. CD133 is one of the factors that regulate tumor progression, which is primarily known as the transmembrane glycoprotein associated with tumor progression or cancer stem cells. The aim of our study was to assess the impact of subcellular CD133 expression on the clinical course of endometrial cancer. (2) Methods: CD133 expression in the plasma membrane, nucleus, and cytoplasm was assessed by immunohistochemical staining in a group of 64 patients with endometrial cancer representing FIGO I-IV stages, grades 1–3 and accounting for tumor angioinvasion. (3) Results: Nuclear localization of CD133 expression was increased in FIGO IB-IV stages compared to FIGO IA. Furthermore, CD133 expression in the nucleus and plasma membrane is positively and negatively associated with a higher grade of endometrial cancer and angioinvasion, respectively. (4) Conclusions: Our findings suggest that positive nuclear CD133 expression in the tumor may be related to a less favorable prognosis of endometrial carcinoma patients and has emerged as a useful biomarker of a high-risk group.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dustin A. Ammendolia ◽  
William M. Bement ◽  
John H. Brumell

AbstractPlasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.


Author(s):  
Daniela Glatzová ◽  
Harsha Mavila ◽  
Maria Chiara Saija ◽  
Tomáš Chum ◽  
Lukasz Cwiklik ◽  
...  

ABSTRACTLAT is a critical regulator of T cell development and function. It organises signalling events at the plasma membrane. However, the mechanism, which controls LAT localisation at the plasma membrane is not fully understood. Here, we studied the impact of helix-breaking amino acids, two prolines and one glycine, in the transmembrane segment on localisation and function of LAT. Using in silico analysis, confocal and superresolution imaging and flow cytometry we demonstrate that central proline residue destabilises transmembrane helix by inducing a kink. The helical structure and dynamics is further regulated by glycine and another proline residue in the luminal part of LAT transmembrane domain. Replacement of these residues with aliphatic amino acids reduces LAT dependence on palmitoylation for sorting to the plasma membrane. However, surface expression of these mutants is not sufficient to recover function of non-palmitoylated LAT in stimulated T cells. These data indicate that geometry and dynamics of LAT transmembrane segment regulate its localisation and function in immune cells.


1998 ◽  
Vol 143 (3) ◽  
pp. 795-813 ◽  
Author(s):  
Christian Kutzleb ◽  
Gabriele Sanders ◽  
Raina Yamamoto ◽  
Xiaolu Wang ◽  
Beate Lichte ◽  
...  

We report the identification and initial characterization of paralemmin, a putative new morphoregulatory protein associated with the plasma membrane. Paralemmin is highly expressed in the brain but also less abundantly in many other tissues and cell types. cDNAs from chicken, human, and mouse predict acidic proteins of 42 kD that display a pattern of sequence cassettes with high inter-species conservation separated by poorly conserved linker sequences. Prenylation and palmitoylation of a COOH-terminal cluster of three cysteine residues confers hydrophobicity and membrane association to paralemmin. Paralemmin is also phosphorylated, and its mRNA is differentially spliced in a tissue-specific and developmentally regulated manner. Differential splicing, lipidation, and phosphorylation contribute to electrophoretic heterogeneity that results in an array of multiple bands on Western blots, most notably in brain. Paralemmin is associated with the cytoplasmic face of the plasma membranes of postsynaptic specializations, axonal and dendritic processes and perikarya, and also appears to be associated with an intracellular vesicle pool. It does not line the neuronal plasmalemma continuously but in clusters and patches. Its molecular and morphological properties are reminiscent of GAP-43, CAP-23, and MARCKS, proteins implicated in plasma membrane dynamics. Overexpression in several cell lines shows that paralemmin concentrates at sites of plasma membrane activity such as filopodia and microspikes, and induces cell expansion and process formation. The lipidation motif is essential for this morphogenic activity. We propose a function for paralemmin in the control of cell shape, e.g., through an involvement in membrane flow or in membrane–cytoskeleton interaction.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Hélène Cazzola ◽  
Laurine Lemaire ◽  
Sébastien Acket ◽  
Elise Prost ◽  
Luminita Duma ◽  
...  

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell’s plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions. IMPORTANCE Bacterial adhesion is a crucial step to allow bacteria to colonize their hosts, invade tissues, and form biofilm. Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis. Here, we use biomimetic membrane models and cell lines to decipher the impact of lipid content of the plasma membrane on enterohemorrhagic E. coli flagellum-mediated adhesion. Our findings provide evidence that polyunsaturated fatty acid (α-linolenic acid) inhibits E. coli flagellar adhesion to the plasma membrane in a mechanism separate from its antimicrobial and anti-inflammatory functions. In addition, we confirm that cholesterol-enriched lipid microdomains, often called lipid rafts, are important in bacterial adhesion. These findings demonstrate that plasma membrane adhesion via bacterial flagella play a significant role for an important human pathogen. This mechanism represents a promising target for the development of novel antiadhesion therapies.


1982 ◽  
Vol 204 (3) ◽  
pp. 639-645 ◽  
Author(s):  
E M Danielsen

The biogenesis of two microvillar enzymes, aminopeptidase N (EC 3.4.11.2) and sucrase (EC 3.2.1.48)-isomaltase (EC 3.2.1.10), was studied by pulse-chase labelling of pig small-intestinal explants kept in organ culture. Both enzymes became inserted into the membrane during or immediately after polypeptide synthesis, indicating that translation takes place on ribosomes attached to the rough endoplasmic reticulum. The earliest detectable forms of aminopeptidase and sucrase-isomaltase were polypeptides of Mr 140 000 and 240 000 respectively. These polypeptides were susceptible to treatment with endo-β-N-acetylglucosaminidiase H (EC 3.2.1.96), suggesting that the microvillar enzymes during or immediately after completion of protein synthesis become glycosylated with a ‘high-mannose’ oligosaccharide structure similarly to other plasma-membrane and secretory proteins. After 20-40 min or 60-90 min of chase, respectively, aminopeptidase N and sucrase-isomaltase were reglycosylated to give the polypeptides of Mr 166 000 (aminopeptidase N) and 265 000 (sucrase-isomaltase). These were expressed at the microvillar membrane after 60-90 min. During the entire process of synthesis and transport to the microvillar membrane the enzymes were bound to membranes, indicating that the biogenesis of aminopeptidase N and sucrase-isomaltase occurs in accordance with the membrane flow hypothesis.


2017 ◽  
Vol 216 (10) ◽  
pp. 3087-3095 ◽  
Author(s):  
Laura Soto Hinojosa ◽  
Manuel Holst ◽  
Christian Baarlink ◽  
Robert Grosse

Entosis is a nonapoptotic form of cell death initiated by actomyosin-dependent homotypic cell-in-cell invasion that can be observed in malignant exudates during tumor progression. We previously demonstrated formin-mediated actin dynamics at the rear of the invading cell as well as nonapoptotic plasma membrane (PM) blebbing in this cellular motile process. Although the contractile actin cortex involved in bleb-driven motility is well characterized, a role for transcriptional regulation in this process has not been studied. Here, we explore the impact of the actin-controlled MRTF–SRF (myocardin-related transcription factor–serum response factor) pathway for sustained PM blebbing and entotic invasion. We find that cortical blebbing is tightly coupled to MRTF nuclear shuttling to promote the SRF transcriptional activity required for entosis. Furthermore, PM blebbing triggered SRF-mediated up-regulation of the metastasis-associated ERM protein Ezrin. Notably, Ezrin is sufficient and important to sustain bleb dynamics for cell-in-cell invasion when SRF is suppressed. Our results highlight the critical role of the actin-regulated MRTF transcriptional pathway for bleb-associated invasive motility, such as during entosis.


2011 ◽  
Vol 439 (3) ◽  
pp. 433-445 ◽  
Author(s):  
Sigi Benjamin ◽  
Hilla Weidberg ◽  
Debora Rapaport ◽  
Olga Pekar ◽  
Marina Nudelman ◽  
...  

EHDs [EH (Eps15 homology)-domain-containing proteins] participate in different stages of endocytosis. EHD2 is a plasma-membrane-associated EHD which regulates trafficking from the plasma membrane and recycling. EHD2 has a role in nucleotide-dependent membrane remodelling and its ATP-binding domain is involved in dimerization, which creates a membrane-binding region. Nucleotide binding is important for association of EHD2 with the plasma membrane, since a nucleotide-free mutant (EHD2 T72A) failed to associate. To elucidate the possible function of EHD2 during endocytic trafficking, we attempted to unravel proteins that interact with EHD2, using the yeast two-hybrid system. A novel interaction was found between EHD2 and Nek3 [NIMA (never in mitosis in Aspergillus nidulans)-related kinase 3], a serine/threonine kinase. EHD2 was also found in association with Vav1, a Nek3-regulated GEF (guanine-nucleotide-exchange factor) for Rho GTPases. Since Vav1 regulates Rac1 activity and promotes actin polymerization, the impact of overexpression of EHD2 on Rac1 activity was tested. The results indicated that wt (wild-type) EHD2, but not its P-loop mutants, reduced Rac1 activity. The inhibitory effect of EHD2 overexpression was partially rescued by co-expression of Rac1 as measured using a cholera toxin trafficking assay. The results of the present study strongly indicate that EHD2 regulates trafficking from the plasma membrane by controlling Rac1 activity.


1998 ◽  
Vol 18 (2) ◽  
pp. 69-78 ◽  
Author(s):  
Robert J. Lee ◽  
Susan Wang ◽  
Mary Jo Turk ◽  
Philip S. Low

Targeted liposomal drug formulations may enter cells by receptor-mediated endocytosis and then traffick by membrane flow into acidic intracellular compartments. In order to understand the impact of these intracellular pH changes on liposomal drug unloading, the effect of pH on the release from folate-targeted liposomes of three model compounds with distinct pH dependencies was examined. 5(6)-carboxyfluorescein, which titrates from its anionic to uncharged form following internalization by KB cells, displays strong endocytosis-dependent release, since only its uncharged (endosomal) form is membrane permeable. Endocytosis-triggered unloading of drugs of this sort is enhanced by encapsulating the drug in a weak buffer at neutral pH, so that acidification of the intraliposomal compartment following cellular uptake can occur rapidly. Sulforhodamine B, in contrast, retains both anionic and cationic charges at endosomal pH (∼pH 5), and consequently, escapes the endosomes only very slowly. Doxorubicin, which is commonly loaded into liposomes in its membrane-impermeable (cationic) form using an acidic buffer, still displays endocytosis-triggered unloading, since sufficient uncharged doxorubicin remains at endosomal pHs to allow rapid re-equilibration of the drug according to the new proton gradient across the membrane. In this case, when the extraliposomal [H+] increases 250-fold from 4 × 10−8 M (pH 7.4, outside the cell) to 10−5 M (pH 5, inside the endosome), the ratio of doxorubicin inside to outside the liposome must decrease by a factor of 250. Therefore, the collapse of the transliposomal pH gradient indirectly drives an efflux of the drug molecule from the liposome. Since a change in intraliposomal pH is not required to unload drugs of this type, the intraliposomal compartment can be buffered strongly at acidic pH to prevent premature release of the drug outside the cell. In summary, pH triggered release of liposome-encapsulated drugs can be achieved both with drugs that increase as well as decrease their membrane permeabilities upon acidification, as long as the intraliposomal buffer strength and pH is rationally selected.


2018 ◽  
Author(s):  
Deike J. Omnus ◽  
Angela Cadou ◽  
Gary H.C. Chung ◽  
Jakob M. Bader ◽  
Christopher J. Stefan

AbstractPhosphoinositide lipids provide spatial landmarks during polarized secretion. Here, we elucidate a role for phosphatidylinositol 4-phosphate (PI4P) metabolism in the control of cell polarity. In budding yeast, PI4P is enriched at the plasma membrane of growing daughter cells. Upon heat shock however, PI4P rapidly increases at the plasma membrane in mother cells resulting in a more uniform PI4P distribution. Rather than phosphoinositide kinase activation, PI4P hydrolysis is impaired to generate the heat-induced PI4P signal in mother cells. This fine tune control of PI4P metabolism is mediated through attenuation of the Osh3 protein that binds and presents PI4P to a phosphoinositide phosphatase. Importantly, Osh3 undergoes phase transitions upon environmental stress conditions, resulting in intracellular aggregates and reduced cortical localization. The chaperone Hsp104 co-assembles with intracellular Osh3 granules, but is not required for their formation. Interestingly, the Osh3 GOLD domain, also present in the ER-localized p24 cargo adaptor family, is sufficient to form stress granules. Accordingly, GOLD-mediated phase transitions may provide a general mechanism to modulate secretion and growth upon transient changes in physiological and environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document