Cryptobenthic reef fishes: depth distribution and correlations with habitat complexity and sea urchins

2012 ◽  
Vol 80 (4) ◽  
pp. 852-865 ◽  
Author(s):  
A. Dalben ◽  
S. R. Floeter
2021 ◽  
Author(s):  
◽  
Shane Wallace Geange

<p>Both habitat complexity and competitive interactions can shape patterns of distribution and abundance of species. I evaluated the separate and joint effects of competitive interactions and habitat complexity on the survival of young fishes (Family Labridae) on coral reefs. First, I developed (in Chapter 2) a quantitative approach to evaluate potential resource (i.e., niche) overlap among groups of co-occurring species. Using appropriate transformations and probability models, I show that different types of data (e.g., categorical, continuous, count or binary data, as well as electivity scores) give rise to a standard measure of niche overlap, with the overlap statistic between two species defined as the overlapping area between the distributions for each species. Measurements derived from different types of data can be combined into a single multivariate analysis of niche overlap by averaging over multiple axes. I then describe null model permutation tests that differentiate between species occupying similar and different niches within my unified indices. I then implemented this approach (in Chapter 3) to evaluate potential habitat overlap among eight species of wrasse (Gomphosus varius, Halichoeres hortulanus, H. trimaculatus, Pseudocheilinus hexataenia, Scarus sordidus, Stethojulis bandanensis, Thalassoma hardwicke and T. quinquevittatum), and used these results to inform my subsequent field experiments. In a field assay, I identified the presence of T. quinquevittatum as having the greatest negative effect on survival of transplanted T. hardwicke from a suite of three candidate species which were most similar in habitat use to T. hardwicke (the other two candidate species were G. varius and P. hexataenia). In a subsequent field experiment, I tested how competition with T. quinquevittatum and structural refuge interact to influence the postsettlement survival of T. hardwicke. Competition with T. quinquevittatum and structural refuge both altered the survival of T. hardwicke, although their effects were not interactive, indicating that structural complexity did not mitigate the negative effects of competition. Survival of T. hardwicke was 2.3 times greater in treatments without T. quinquevittatum relative to those with T. quinquevittatum, and 2.8 times greater in treatments with structural refuge relative to treatments without structural refuge. Thalassoma hardwicke and T. quinquevittatum often enter reef communities asynchronously, resulting in competitive pressures faced by earlyarriving individuals that potentially differ from those experienced by late-arriving individuals. In a series of field experiments, I investigated whether the strength of intra-cohort competitive interactions between recent T. hardwicke and T. quinquevittatum settlers were dependent upon the sequence and temporal separation of their arrival into communities. Survival rates for both species were greatest in the absence of competitors, but when competitors were present, survival rates were maximized when competitors arrived simultaneously. Survival rates declined as each species entered the community progressively later than its competitor. Further, reversals in the sequence of arrival reversed competitive outcomes. Results provide empirical evidence for competitive lotteries in the maintenance of species diversity in demographically open marine systems, while also highlighting the importance of temporal variation in the direction and magnitude of interaction strengths. To further our understanding of how timing of arrival influences interaction strengths, I tested whether increasing the availability of complex habitat attenuates or enhances timing-of-arrival effects. Results from this field experiment indicated that aggression by early-arriving individuals towards late-arriving individuals increased as arrival times diverged. When aggression was weak, subordinate individuals were not displaced from complex habitat. Experimental increases in the availability of complex habitat resulted in increased survival of subordinates, presumably by disrupting predation pressure. However, when aggression was intense, competitive subordinates were displaced from complex habitat (regardless of the amount of complex habitat available), and this likely increased their exposure to predators. Overall, the experimental and observational components of this thesis emphasise heterogeneity in competitive environments experienced by recently settled reef fishes. These results highlight the important role that priority effects and habitat complexity play in determining the persistence of reef fish settlers, and illustrate how ecological contexts can add considerable variation to realised interaction strengths.</p>


2009 ◽  
Vol 60 (3) ◽  
pp. 211 ◽  
Author(s):  
Jeffrey M. Leis ◽  
Richard F. Piola ◽  
Amanda C. Hay ◽  
Colin Wen ◽  
Kun-Ping Kan

In demersal marine fishes, the dispersal of larvae determines the geographical scale of population connectivity, and larval behaviour may influence dispersal. Yet, little is known of the ontogeny of behaviours that can influence dispersal. The present study examined the development of these behaviours in pelagic larvae of tropical marine fishes (4–21 mm) that occupy non-reef habitats as adults: Eleutheronema tetradactylum (Polynemidae) and Leiognathus equulus (Leiognathidae). In the laboratory, critical speed (Ucrit) increased from 3 to 34 cm s–1 at 1.3–1.7 cm s–1 per mm of size, with the fastest larvae up to 50% faster. In situ speed increased from 4 to 25 cm s–1 at 0.7–2.2 cm s–1 per mm, and was 10–14 body length s–1 (60–90% of Ucrit). Endurance increased from 0 to >40 km at 2.4–4.7 km per mm. In the sea, orientation precision did not change ontogenetically, both species tended to swim in loops, and neither significant overall directionality nor ontogenetic change in orientation was present. Larval orientation of these non-reef species was less precise than that of reef fishes. The two species differed in depth distribution, and one ascended ontogenetically. These behaviours can potentially influence dispersal outcomes over the full size range of these larvae.


2021 ◽  
Author(s):  
◽  
Shane Wallace Geange

<p>Both habitat complexity and competitive interactions can shape patterns of distribution and abundance of species. I evaluated the separate and joint effects of competitive interactions and habitat complexity on the survival of young fishes (Family Labridae) on coral reefs. First, I developed (in Chapter 2) a quantitative approach to evaluate potential resource (i.e., niche) overlap among groups of co-occurring species. Using appropriate transformations and probability models, I show that different types of data (e.g., categorical, continuous, count or binary data, as well as electivity scores) give rise to a standard measure of niche overlap, with the overlap statistic between two species defined as the overlapping area between the distributions for each species. Measurements derived from different types of data can be combined into a single multivariate analysis of niche overlap by averaging over multiple axes. I then describe null model permutation tests that differentiate between species occupying similar and different niches within my unified indices. I then implemented this approach (in Chapter 3) to evaluate potential habitat overlap among eight species of wrasse (Gomphosus varius, Halichoeres hortulanus, H. trimaculatus, Pseudocheilinus hexataenia, Scarus sordidus, Stethojulis bandanensis, Thalassoma hardwicke and T. quinquevittatum), and used these results to inform my subsequent field experiments. In a field assay, I identified the presence of T. quinquevittatum as having the greatest negative effect on survival of transplanted T. hardwicke from a suite of three candidate species which were most similar in habitat use to T. hardwicke (the other two candidate species were G. varius and P. hexataenia). In a subsequent field experiment, I tested how competition with T. quinquevittatum and structural refuge interact to influence the postsettlement survival of T. hardwicke. Competition with T. quinquevittatum and structural refuge both altered the survival of T. hardwicke, although their effects were not interactive, indicating that structural complexity did not mitigate the negative effects of competition. Survival of T. hardwicke was 2.3 times greater in treatments without T. quinquevittatum relative to those with T. quinquevittatum, and 2.8 times greater in treatments with structural refuge relative to treatments without structural refuge. Thalassoma hardwicke and T. quinquevittatum often enter reef communities asynchronously, resulting in competitive pressures faced by earlyarriving individuals that potentially differ from those experienced by late-arriving individuals. In a series of field experiments, I investigated whether the strength of intra-cohort competitive interactions between recent T. hardwicke and T. quinquevittatum settlers were dependent upon the sequence and temporal separation of their arrival into communities. Survival rates for both species were greatest in the absence of competitors, but when competitors were present, survival rates were maximized when competitors arrived simultaneously. Survival rates declined as each species entered the community progressively later than its competitor. Further, reversals in the sequence of arrival reversed competitive outcomes. Results provide empirical evidence for competitive lotteries in the maintenance of species diversity in demographically open marine systems, while also highlighting the importance of temporal variation in the direction and magnitude of interaction strengths. To further our understanding of how timing of arrival influences interaction strengths, I tested whether increasing the availability of complex habitat attenuates or enhances timing-of-arrival effects. Results from this field experiment indicated that aggression by early-arriving individuals towards late-arriving individuals increased as arrival times diverged. When aggression was weak, subordinate individuals were not displaced from complex habitat. Experimental increases in the availability of complex habitat resulted in increased survival of subordinates, presumably by disrupting predation pressure. However, when aggression was intense, competitive subordinates were displaced from complex habitat (regardless of the amount of complex habitat available), and this likely increased their exposure to predators. Overall, the experimental and observational components of this thesis emphasise heterogeneity in competitive environments experienced by recently settled reef fishes. These results highlight the important role that priority effects and habitat complexity play in determining the persistence of reef fish settlers, and illustrate how ecological contexts can add considerable variation to realised interaction strengths.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. D. V. Bodmer ◽  
P. M. Wheeler ◽  
P. Anand ◽  
S. E. Cameron ◽  
Sanni Hintikka ◽  
...  

AbstractWhen Caribbean long-spined sea urchins, Diadema antillarum, are stable at high population densities, their grazing facilitates scleractinian coral dominance. Today, populations remain suppressed after a mass mortality in 1983–1984 caused a loss of their ecosystem functions, and led to widespread declines in ecosystem health. This study provides three lines of evidence to support the assertion that a lack of habitat complexity on Caribbean coral reefs contributes to their recovery failure. Firstly, we extracted fractal dimension (D) measurements, used as a proxy for habitat complexity, from 3D models to demonstrate that urchins preferentially inhabit areas of above average complexity at ecologically relevant spatial scales. Secondly, controlled behaviour experiments showed that an energetically expensive predator avoidance behaviour is reduced by 52% in complex habitats, potentially enabling increased resource allocation to reproduction. Thirdly, we deployed a network of simple and cost-effective artificial structures on a heavily degraded reef system in Honduras. Over a 24-month period the adult D. antillarum population around the artificial reefs increased by 320% from 0.05 ± 0.01 to 0.21 ± 0.04 m−2 and the juvenile D. antillarum population increased by 750% from 0.08 ± 0.02 to 0.68 ± 0.07 m−2. This study emphasises the important role of habitat structure in the ecology of D. antillarum and as a barrier to its widespread recovery.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.


Sign in / Sign up

Export Citation Format

Share Document