scholarly journals Heat stress adaptation of Escherichia coli under dynamic conditions: effect of inoculum size*

2010 ◽  
Vol 51 (4) ◽  
pp. 450-455 ◽  
Author(s):  
I. Cornet ◽  
E. Van Derlinden ◽  
A.M. Cappuyns ◽  
J.F. Van Impe
2016 ◽  
Vol 79 (10) ◽  
pp. 1673-1679 ◽  
Author(s):  
ACHYUT ADHIKARI ◽  
ANDY BARY ◽  
CRAIG COGGER ◽  
CALEB JAMES ◽  
GÜLHAN ÜNLÜ ◽  
...  

ABSTRACT Pathogens exposed to agricultural production environments are subject to multiple stresses that may alter their survival under subsequent stress conditions. The objective of this study was to examine heat and starvation stress response of Escherichia coli O157:H7 strains isolated from agricultural matrices. Seven E. coli O157:H7 isolates from different agricultural matrices—soil, compost, irrigation water, and sheep manure—were selected, and two ATCC strains were used as controls. The E. coli O157:H7 isolates were exposed to heat stress (56°C in 0.1% peptone water for up to 1 h) and starvation (in phosphate-buffered saline at 37°C for 15 days), and their survival was examined. GInaFiT freeware tool was used to perform regression analyses of the surviving populations. The Weibull model was identified as the most appropriate model for response of the isolates to heat stress, whereas the biphasic survival curves during starvation were fitted using the double Weibull model, indicating the adaptation to starvation or a resistant subpopulation. The inactivation time during heating to achieve the first decimal reduction time (δ) calculated with the Weibull parameters was the highest (45 min) for a compost isolate (Comp60A) and the lowest (28 min) for ATCC strain 43895. Two of the nine isolates (ATCC 43895 and a manure isolate) had β < 1, indicating that surviving populations adapted to heat stress, and six strains demonstrated downward concavity (β > 1), indicating decreasing heat resistance over time. The ATCC strains displayed the longest δ2 (>1,250 h) in response to starvation stress, compared with from 328 to 812 h for the environmental strains. The considerable variation in inactivation kinetics of E. coli O157:H7 highlights the importance of evaluating response to stress conditions among individual strains of a specific pathogen. Environmental isolates did not exhibit more robust response to stress conditions in this study compared with ATCC strains.


Author(s):  
Oliver Selmoni ◽  
Gaël Lecellier ◽  
Hélène Magalon ◽  
Laurent Vigliola ◽  
Francesca Benzoni ◽  
...  

AbstractAnomalous heat waves are causing a major decline of hard corals around the world and threatening the persistence of coral reefs. There are, however, reefs that had been exposed to recurrent thermal stress over the years and whose corals appeared tolerant against heat. One of the mechanisms that could explain this phenomenon is local adaptation, but the underlying molecular mechanisms are poorly known.In this work, we applied a seascape genomics approach to study heat stress adaptation in three coral species of New Caledonia (southwestern Pacific) and to uncover molecular actors potentially involved. We used remote sensing data to characterize the environmental trends across the reef system, and sampled corals living at the most contrasted sites. These samples underwent next generation sequencing to reveal single-nucleotide-polymorphisms (SNPs) of which frequencies associated with heat stress gradients. As these SNPs might underpin an adaptive role, we characterized the functional roles of the genes located in their genomic neighborhood.In each of the studied species, we found heat stress associated SNPs notably located in proximity of genes coding for well-established actors of the cellular responses against heat. Among these, we can mention proteins involved in DNA damage-repair, protein folding, oxidative stress homeostasis, inflammatory and apoptotic pathways. In some cases, the same putative molecular targets of heat stress adaptation recurred among species.Together, these results underscore the relevance and the power of the seascape genomics approach for the discovery of adaptive traits that could allow corals to persist across wider thermal ranges.


2017 ◽  
Vol 15 (5) ◽  
pp. 324-330 ◽  
Author(s):  
Yanqing Zhang ◽  
Zhengtao Xiao ◽  
Qin Zou ◽  
Jianhuo Fang ◽  
Qifan Wang ◽  
...  

1981 ◽  
Vol 44 (4) ◽  
pp. 271-274
Author(s):  
ADELLE W. STEWART

The fate of naturally occurring and added bacterial pathogens was determined in “soul foods” purchased at local supermarkets and farm families while the foods were stored under conditions simulating those used for retail distribution, home storage, and preparation before use. Viable count determinations for 10 samples at the end of a 5-day period at 10 C showed considerable decreases in comparison to the inoculum size, indicating that growth was not promoted. Escherichia coli survived in all the food samples but the populations decreased by 1 to 9 log cycles/g of food. Salmonella typhimurium survived in 59% of the food samples. Except for farm family collard greens and sausage (encased), Staphylococcus aureus remained viable in all of the foods tested an d was the only survivor in cracklings (cooked) obtained from both sources. Clostridium perfringens was detected in farm family sweet peas and 23% of the pig offal samples.


1988 ◽  
Vol 212 (2) ◽  
pp. 203-206 ◽  
Author(s):  
Elena C. Guzman ◽  
Alfonso Jimenez-Sanchez ◽  
Elisha Orr ◽  
Robert H. Pritchard

Sign in / Sign up

Export Citation Format

Share Document