Oxidation behavior and mechanism of aluminum oxynitride (AlON) at elevated temperatures

2020 ◽  
Vol 104 (2) ◽  
pp. 1040-1046
Author(s):  
Shuixian Yang ◽  
Hetuo Chen ◽  
Jianmin Li ◽  
Hao Guo ◽  
Xiaojian Mao ◽  
...  
Author(s):  
Mustafa Bulut Coskun ◽  
Mahmut Faruk Aksit

With the race for higher power and efficiency new gas turbines operate at ever increasing pressures and temperatures. Increased compression ratios and firing temperatures require many engine parts to survive extended service hours under large pressure loads and thermal distortions while sustaining relative vibratory motion. On the other hand, wear at elevated temperatures limits part life. Combined with rapid oxidation for most materials wear resistance reduces rapidly with increasing temperature. In order to achieve improved wear performance at elevated temperatures better understanding of combined wear and oxidation behavior of high temperature super alloys and coatings needed. In an attempt to aid designers for high temperature applications, this work provides a quick reference for the high temperature friction and wear research available in open literature. High temperature friction and wear data have been collected, grouped and summarized in tables.


2006 ◽  
Vol 321-323 ◽  
pp. 913-916
Author(s):  
Sang Ll Lee ◽  
Yun Seok Shin ◽  
Jin Kyung Lee ◽  
Jong Baek Lee ◽  
Jun Young Park

The microstructure and the mechanical property of liquid phase sintered (LPS) SiC materials with oxide secondary phases have been investigated. The strength variation of LPS-SiC materials exposed at the elevated temperatures has been also examined. LPS-SiC materials were sintered at the different temperatures using two types of Al2O3/Y2O3 compositional ratio. The characterization of LPS-SiC materials was investigated by means of SEM with EDS, three point bending test and indentation test. The LPS-SiC material with a density of about 3.2 Mg/m3 represented a flexural strength of about 800 MPa and a fracture toughness of about 9.0 MPa⋅√m.


2007 ◽  
Vol 280-283 ◽  
pp. 1869-1872
Author(s):  
Cui Wei Li ◽  
Chang An Wang ◽  
Yong Huang

Laminated ceramics with high mechanical properties were fabricated in the Si3N4/BN system. The mechanical properties at elevated temperatures were tested, and the oxidation behavior during tested procedure was studied at the same time. The flexure strength of the Si3N4/BN laminated ceramics changed a little below 1000°C. The displacement-load curves appeared non-linear characteristic even at high temperature. During testing procedure at high temperature, oxidation behavior of silicon nitride and silicon carbide happened, and no oxidation product of boron nitride was found. The silicon nitride layers were oxidized to form a protective silicate scale, which prevented oxidation of the boron nitride interlayers. The stability of boron nitride was beneficial to the boron nitride interlayer to partition the silicon nitride matrix layers at high temperature.


2014 ◽  
Vol 1025-1026 ◽  
pp. 504-508 ◽  
Author(s):  
Sang An Ha ◽  
Dong Kyun Kim ◽  
Woo Jin Lee ◽  
Chang Yong Kang ◽  
Kwon Hoo Kim ◽  
...  

Comparison study of oxidation behavior of low carbon steel was conducted at the temperature range of 500°C to 700°C under a 0.2 atm oxygen pressure by continuous and discontinuous oxidation methods. Oxidation rate of both cases was found to be increased with increasing temperature from 500°C to 700°C and obeyed parabolic rate law. In addition, activation energy for the continuous oxidation of steel was found to be a 164.8 kJ/mole, which means that oxidation rate is proportionally dependant on temperature. In case of cyclic oxidation, the oxidation rate was shown to faster than continuous oxidation at all temperatures due to direction oxidation through spallation of the oxide layer.


Author(s):  
D. Filsinger ◽  
A. Schulz ◽  
S. Wittig ◽  
C. Taut ◽  
H. Klemm ◽  
...  

A further increase of thermal efficiency and a reduction of the exhaust emissions of ground based gas turbines can be achieved by introducing new high temperature resistant materials. Therfore, ceramics are under international development. They offer excellent strengths at room and elevated temperatures. For gas turbine combustor applications, however, these materials have to maintain their advantageous properties under hostile environment. For the assessment and comparison of the oxidation behavior of different nonoxide ceramic materials a test rig was developed at the Institute for Thermal Turbomachinery (ITS), University of Karlsruhe, Germany. The test rig was integrated into the high temperature/ high pressure laboratory. A ceramic model combustion chamber was designed which allowed the exposure of standard four-point flexure specimens to the hot combustion gas flow. Gas temperatures and pressures could be varied in a wide range. Additionally, the partial steam pressure could be adjusted to real combustor conditions. The present paper gives a detailed description of the test rig and presents results of 100 hours endurance tests of ceramic materials at 1400°C. The initial strengths and the strengths after oxidation tests are compared. In addition to this, photographs illustrating the changes of the material’s microstructure are presented.


2002 ◽  
Vol 8 (S02) ◽  
pp. 1318-1319 ◽  
Author(s):  
Bradley R. Johnson ◽  
Ya-Huei Chin

2018 ◽  
Vol 37 (6) ◽  
pp. 563-569
Author(s):  
Yang Jinlin ◽  
Xiao Hanxin

AbstractTo survey the probability of the re-utilization of nickel containing slag corroded magnesia and alumina-graphite refractories, different amounts of nickel oxide (NiO) were used as one of raw materials to synthesize nickel containing magnesium aluminum oxynitride (MgAlON) composites, and the sintering and oxidation behavior have been explored in this work. The results reveal that with the increasing NiO additive, submicron metallic Ni grains are segregated from the (Ni,Mg)AlON spinel, and these grains are beneficial to improve thermal shock resistance of MgAlON. Though the oxidation reaction of (Ni,Mg)AlON starts at lower temperature than MgAlON, the metallic Ni grains in the plate can improve the oxidation resistance. Hence, the metallic nickel containing (Ni,Mg)AlON composite has not only superior thermal shock resistance but also excellent oxidation resistance, and it is of great potential to utilize in plant. So, the fabrication of metallic nickel containing (Ni,Mg)AlON composite should be a feasible way to reuse the nickel slag corroded magnesia and alumina graphite refractories.


Sign in / Sign up

Export Citation Format

Share Document