scholarly journals Role of long non‐coding RNAs in adipogenesis: State of the art and implications in obesity and obesity‐associated diseases

2021 ◽  
Author(s):  
Federica Rey ◽  
Valentina Urrata ◽  
Luisa Gilardini ◽  
Simona Bertoli ◽  
Valeria Calcaterra ◽  
...  
2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.


2020 ◽  
Vol 16 ◽  
Author(s):  
Giulia Pinna ◽  
Lavinia Sanfilippo ◽  
Pier Paolo Bassareo ◽  
Vassilios Fanos ◽  
Maria Antonietta Marcialis

: This paper examines the potential link between COVID-19 and the presence of comorbidities and assesses the role of inflammation in this correlation. In COVID-19 patients, the most frequently associated diseases share a pathogenic inflammatory basis and apparently act as a risk factor in the onset of a more severe form of the disease, particularly in adulthood. However, in children, the understanding of the underlying pathogenic mechanisms is often complicated by the milder symptoms presented. A series of theories have therefore been put forward with a view of providing a better understanding of the role played by inflammation in this dramatic setting. All evidence available to date on this topic is discussed in this review.


2020 ◽  
Vol 20 (10) ◽  
pp. 1597-1610 ◽  
Author(s):  
Taru Aggarwal ◽  
Ridhima Wadhwa ◽  
Riya Gupta ◽  
Keshav Raj Paudel ◽  
Trudi Collet ◽  
...  

Regardless of advances in detection and treatment, breast cancer affects about 1.5 million women all over the world. Since the last decade, genome-wide association studies (GWAS) have been extensively conducted for breast cancer to define the role of miRNA as a tool for diagnosis, prognosis and therapeutics. MicroRNAs are small, non-coding RNAs that are associated with the regulation of key cellular processes such as cell multiplication, differentiation, and death. They cause a disturbance in the cell physiology by interfering directly with the translation and stability of a targeted gene transcript. MicroRNAs (miRNAs) constitute a large family of non-coding RNAs, which regulate target gene expression and protein levels that affect several human diseases and are suggested as the novel markers or therapeutic targets, including breast cancer. MicroRNA (miRNA) alterations are not only associated with metastasis, tumor genesis but also used as biomarkers for breast cancer diagnosis or prognosis. These are explained in detail in the following review. This review will also provide an impetus to study the role of microRNAs in breast cancer.


Author(s):  
Eduardo Manzano Moreno

This chapter addresses a very simple question: is it possible to frame coinage in the Early Middle Ages? The answer will be certainly yes, but will also acknowledge that we lack considerable amounts of relevant data potentially available through state-of-the-art methodologies. One problem is, though, that many times we do not really know the relevant questions we can pose on coins; another is that we still have not figured out the social role of coinage in the aftermath of the Roman Empire. This chapter shows a number of things that could only be known thanks to the analysis of coins. And as its title suggests it will also include some reflections on greed and generosity.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 694 ◽  
Author(s):  
Ellora Padhi ◽  
Subhasish Dey ◽  
Venkappayya R. Desai ◽  
Nadia Penna ◽  
Roberto Gaudio

In a natural gravel-bed stream, the bed that has an organized roughness structure created by the streamflow is called the water-worked gravel bed (WGB). Such a bed is entirely different from that created in a laboratory by depositing and spreading gravels in the experimental flume, called the screeded gravel bed (SGB). In this paper, a review on the state-of-the-art research on WGBs is presented, highlighting the role of water-work in determining the bed topographical structures and the turbulence characteristics in the flow. In doing so, various methods used to analyze the bed topographical structures are described. Besides, the effects of the water-work on the turbulent flow characteristics, such as streamwise velocity, Reynolds and form-induced stresses, conditional turbulent events and secondary currents in WGBs are discussed. Further, the results form WGBs and SGBs are compared critically. The comparative study infers that a WGB exhibits a higher roughness than an SGB. Consequently, the former has a higher magnitude of turbulence parameters than the latter. Finally, as a future scope of research, laboratory experiments should be conducted in WGBs rather than in SGBs to have an appropriate representation of the flow field close to a natural stream.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 628
Author(s):  
Dagmara Baraniak ◽  
Jerzy Boryski

This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.


2021 ◽  
Vol 218 ◽  
pp. 153327
Author(s):  
Kaveh Ebahimzadeh ◽  
Hamed Shoorei ◽  
Seyed Ali Mousavinejad ◽  
Farhad Tondro Anamag ◽  
Marcel E. Dinger ◽  
...  
Keyword(s):  

2021 ◽  
Vol 892 ◽  
pp. 173809
Author(s):  
Soudeh Ghafouri-Fard ◽  
Mohammad Taheri

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunzhen Cheng ◽  
Fan Liu ◽  
Na Tian ◽  
Raphael Anue Mensah ◽  
Xueli Sun ◽  
...  

AbstractFusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.


Sign in / Sign up

Export Citation Format

Share Document