scholarly journals Prediction of Texture of Raw Poultry Meat by Visible and Near–Infrared Reflectance Spetroscopy

2013 ◽  
Vol 64 (5) ◽  
Author(s):  
Herlina Abdul Rahim ◽  
Rashidah Ghazali ◽  
Shafishuhaza Sahlan ◽  
Mashitah Shikh Maidin

Near-infrared (NIR) spectroscopy is a non-destructive, low cost and fast measurement technique that is required to improve the meat texture quality prediction. In this research, visible/NIR spectroscopy has been used for the prediction of raw chicken meat texture from different types of chickens by referring to the reference data obtained from destructive measurement using a Volodkevich Bite Jaws texture analyser. The Partial Least Squares analysis shows that the prediction accuracy is higher for the Az-Zain village organic chickens (85–95%) than for village chickens (42–68%) and broiler chickens (42–44%). The high prediction accuracy and low absorbance spectra of Az-Zain village organic chickens compared to broiler and village chickens could be correlated with the food composition of the chicken meal.

1996 ◽  
Vol 4 (1) ◽  
pp. 201-212 ◽  
Author(s):  
A. Couillard ◽  
A.J. Turgeon ◽  
M.O. Westerhaus ◽  
J.S. Shenk

The use of near infrared (NIR) reflectance spectroscopy to evaluate soil properties has started to receive more attention in recent years. The technology is evolving and research on NIR spectroscopic analysis using natural state samples is increasing. There is no method available today, besides NIR spectroscopy, that could simultaneously evaluate physical and chemical properties of a soil sample without processing the sample and affecting the visual quality of the site. More samples can be scanned in their natural undisturbed form resulting in a variety of particle sizes. Research on the effect of scanning products with different particle sizes is essential. The differences in the particle size of the soil separates may lower the prediction accuracy of NIR spectroscopy. In this study, we evaluated the ability of NIR spectroscopy to predict soil separates from artificial soil samples. Feldspar and silica sands and silts, kaolinite and montmorillonite clays, and reed sedge and Canadian sphagnum peat moss organic matters were used as separates. They were scanned alone, and in different mixture percentages, from 400 to 2500 nm with a total of 116 samples. The absence of linearity in the binary mixtures, preventing accurate calibration, was noticed and required the development of a transformation model to generate new laboratory values from a laboratory weight scaling factor generated for each soil separate. The adjustment of the laboratory values improved the prediction accuracy of the mixtures. The coefficient of determination ranged from 0.95 to 0.99. The standard error of cross-validation ranged from 2.09 to 5.82%.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 880C-880
Author(s):  
R.J. Hutton ◽  
A.B. Blakeney ◽  
G.D. Batten ◽  
L.A. Welsh

Fertilizers are an essential input for sustained high yields and quality of orange fruit. Monitoring leaf nutrient levels is desirable and procedures for using leaf analysis to make fertilizer recommendations are well established. Wider adoption of leaf analysis would result if more-convenient sampling and analytical techniques were available. Analysis using near-infrared reflectance spectroscopy (NIR) offers many advantages, including accuracy, low cost, and short turnaround time, which should appeal to citrus producers. NIR analysis is currently being used to decide the appropriate fertilizer applications for local cereal producers. Samples were collected from a cross-section (7%) of the orange-producing farms in the Murrumbidgee Irrigation Area (MIA) of New South Wales (lat.35, long.146). This semi-arid, winter-dominant rainfall region is a major citrus-producing area in Australia. Samples comprised the 2nd and 3rd fully expanded leaves from non-fruiting 4-month-old flush shoots of sweet orange trees `Late Valencia' on P. trifoliata rootstock. The microwave-dried and ground samples were analyzed by the traditional techniques, and the samples were then used to develop and verify calibrations for N, P, and K. These calibrations determine nutrients in leaves with error (SEP) values that are close to the errors associated with traditional methods.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Elise A. Kho ◽  
Jill N. Fernandes ◽  
Andrew C. Kotze ◽  
Glen P. Fox ◽  
Maggy T. Sikulu-Lord ◽  
...  

Abstract Background Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, thereby preventing losses in production and flock welfare. We previously demonstrated the ability of visible–near-infrared (Vis–NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we report our investigation of whether variation in sheep type and environment affect the prediction accuracy of Vis–NIR spectroscopy in quantifying blood in faeces. Methods Visible–NIR spectra were obtained from worm-free sheep faeces collected from different environments and sheep types in South Australia (SA) and New South Wales, Australia and spiked with various sheep blood concentrations. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387–609 nm) using partial least squares regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected sheep faeces from Queensland (QLD). Samples from QLD were quantified using Hemastix® test strip and FAMACHA© diagnostic test scores. Results Principal component analysis showed that location, class of sheep and pooled versus individual samples were factors affecting the Hb predictions. The models successfully differentiated ‘healthy’ SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity 57–94%, specificity 44–79%). The models were not predictive for blood in the naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of the QLD samples, however, identified a difference between samples containing high and low quantities of blood. Conclusion This study demonstrates the potential of Vis–NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture sufficient environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic.


1998 ◽  
Vol 6 (1) ◽  
pp. 229-234 ◽  
Author(s):  
William R. Windham ◽  
W.H. Morrison

Near infrared (NIR) spectroscopy in the prediction of individual and total fatty acids of bovine M. Longissimus dorsi neck muscles has been studied. Beef neck lean was collected from meat processing establishments using advanced meat recovery systems and hand-deboning. Samples ( n = 302) were analysed to determine fatty acid (FA) composition and scanned from 400 to 2498 nm. Total saturated and unsaturated FA values ranged from 43.2 to 62.0% and 38.3 to 56.2%, respectively. Results of partial least squares (PLS) modeling shown reasonably accurate models were attained for total saturate content [standard error of performance ( SEP = 1.10%); coefficient of determination on the validation set ( r2 = 0.77)], palmitic ( SEP = 0.94%; r2 = 0.69), unsaturate ( SEP = 1.13%; r2 = 0.77), and oleic ( SEP = 0.97; r2 = 0.78). Prediction of other individual saturated and unsaturated FAs was less accurate with an r2 range of 0.10 to 0.53. However, the sum of individual predicted saturated and unsaturated FA was acceptable compared with the reference method ( SEP = 1.10 and 1.12%, respectively). This study shows that NIR can be used to predict accurately total fatty acids in M. Longissimus dorsi muscle.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Sylvio Barbon ◽  
Ana Paula Ayub da Costa Barbon ◽  
Rafael Gomes Mantovani ◽  
Douglas Fernandes Barbin

Identification of chicken quality parameters is often inconsistent, time-consuming, and laborious. Near-infrared (NIR) spectroscopy has been used as a powerful tool for food quality assessment. However, the near-infrared (NIR) spectra comprise a large number of redundant information. Determining wavelengths relevance and selecting subsets for classification and prediction models are mandatory for the development of multispectral systems. A combination of both attribute and wavelength selection for NIR spectral information of chicken meat samples was investigated. Decision Trees and Decision Table predictors exploit these optimal wavelengths for classification tasks according to different quality grades of poultry meat. The proposed methodology was conducted with a support vector machine algorithm (SVM) to compare the precision of the proposed model. Experiments were performed on NIR spectral information (1050 wavelengths), colour (CIEL∗a∗b∗, chroma, and hue), water holding capacity (WHC), and pH of each sample analyzed. Results show that the best method was the REPTree based on 12 wavelengths, allowing for classification of poultry samples according to quality grades with 77.2% precision. The selected wavelengths could lead to potential simple multispectral acquisition devices.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 658
Author(s):  
Matthew F. Digman ◽  
Jerry H. Cherney ◽  
Debbie J. R. Cherney

Advanced manufacturing techniques have enabled low-cost, on-chip spectrometers. Little research exists, however, on their performance relative to the state of technology systems. The present study compares the utility of a benchtop FOSS NIRSystems 6500 (FOSS) to a handheld NeoSpectra-Scanner (NEO) to develop models that predict the composition of dried and ground grass, and alfalfa forages. Mixed-species prediction models were developed for several forage constituents, and performance was assessed using an independent dataset. Prediction models developed with spectra from the FOSS instrument had a standard error of prediction (SEP, % DM) of 1.4, 1.8, 3.3, 1.0, 0.42, and 1.3, for neutral detergent fiber (NDF), true in vitro digestibility (IVTD), neutral detergent fiber digestibility (NDFD), acid detergent fiber (ADF), acid detergent lignin (ADL), and crude protein (CP), respectively. The R2P for these models ranged from 0.90 to 0.97. Models developed with the NEO resulted in an average increase in SEP of 0.14 and an average decrease in R2P of 0.002.


1991 ◽  
Vol 31 (2) ◽  
pp. 205 ◽  
Author(s):  
KF Smith ◽  
PC Flinn

Near infrared reflectance (NIR) spectroscopy is a rapid and cost-effective method for the measurement of organic constituents of agricultural products. NIR is widely used to measure feed quality around the world and is gaining acceptance in Australia. This study describes the development of an NIR calibration to measure crude protein (CP), predicted in vivo dry matter digestibility (IVDMD) and neutral detergent fibre (NDF) in temperate pasture species grown in south-western Victoria. A subset of 116 samples was selected on the basis of spectral characteristics from 461 pasture samples grown in 1987-89. Several grass and legume species were present in the population. Stepwise multiple linear regression analysis was used on the 116 samples to develop calibration equations with standard errors of 0.8,2.3 and 2.2% for CP, NDF and IVDMD, respectively. When these equations were tested on 2 independent pasture populations, a significant bias existed between NIR and reference values for 2 constituents in each population, indicating that the calibration samples did not adequately represent the new populations for these constituents. The results also showed that the H statistic alone was inadequate as an indicator of equation performance. It was confirmed that it was possible to develop a broad-based calibration to measure accurately the nutritive value of closed populations of temperate pasture species. For the resulting equations to be used for analysis of other populations, however, they must be monitored by comparing reference and NIR analyses on a small number of samples to check for the presence of bias or a significant increase in unexplained error.


Sign in / Sign up

Export Citation Format

Share Document