Utilisation of Steel Slag as an Aggregate Replacement in Porous Asphalt Mixtures

2014 ◽  
Vol 69 (1) ◽  
Author(s):  
Mohd Rosli Hainin ◽  
Gatot Rusbintardjo ◽  
Mohd Anwar Sahul Hameed ◽  
Norhidayah Abdul Hassan ◽  
Nur Izzi Md. Yusoff

The utilization of porous asphalt mixtures has become increasingly important. This type of pavement has been used in many developed countries for many years with the addition of by-products to reduce the consumption of aggregates in road construction. Recently, the Malaysian Public Works Department (PWD) launched specifications for specialty mixtures and surface treatments, including porous asphalt. Therefore, this study was conducted to investigate the use of steel slag as a conventional aggregate replacement in porous asphalt mixtures. Two porous asphalt gradations, designated as Grade A and Grade B, were used in this study in accordance with the new specification – JKR/SPJ/2008-S4. Steel slag was chosen because its characteristics are quite similar to those of aggregates compared with other by-products such as crumb rubber, glass and many more. It was observed that steel slag aggregate meets all the criteria of the PWD specification except for the water absorption test. The samples of steel slag aggregate mixtures produced were tested for resilient modulus, rutting and permeability, which were later compared with conventional aggregate mixtures. The results show that there is a significant difference in terms of resilient modulus between the steel slag aggregate-based mixture and the conventional aggregate-based mixture. The same scenario was observed in the rutting test, where the steel slag aggregate mixture possesses a higher rut resistance. However the mixtures made from conventional aggregate had higher permeability values compared to the steel slag mixtures. It can be concluded that the use of steel slag could performed admirably during high traffic loading.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Altan Cetin

The purpose of this study is to investigate the effect of size distribution and concentration of crumb rubber on the performance characteristics of porous asphalt mixture. The recycling of scrap tires in asphalt pavements appears as an important alternative providing a large-scale market. The characteristics of bitumen are very important with regard to service life of porous asphalt pavement. The experimental study consists of two main steps. Firstly, the mixture design was performed to determine the optimum bitumen content. In the latter step, the mixtures were modified by dry process using crumb rubber in three different grain size distributions of #4~#20, #20~#200, and #4~#200 and rubber content of 10%, 15%, and 20% as weight of optimum bitumen. The permeability, Cantabro abrasion loss, indirect tensile strength, moisture susceptibility, and resilient modulus tests were carried out on the specimens. Test results show that #20~#200 sized rubber particles reduced air voids and coefficient of permeability, while they increased the Cantabro abrasion loss. In general, increasing the crumb rubber size and content decreased the performance characteristics of the porous asphalt mixtures.


2021 ◽  
Vol 13 (6) ◽  
pp. 3315
Author(s):  
Mansour Fakhri ◽  
Danial Arzjani ◽  
Pooyan Ayar ◽  
Maede Mottaghi ◽  
Nima Arzjani

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.


2015 ◽  
Vol 76 (14) ◽  
Author(s):  
Norhidayah Abdul Hassan ◽  
Nor Asniza Mohamed Abdullah ◽  
Nurul Athma Mohd Shukry ◽  
Mohd Zul Hanif Mahmud ◽  
Nur Zurairahetty Mohd Yunus ◽  
...  

Porous asphalt mixture is one of the alternative solutions to increase pervious surface area due to urbanization. The uniqueness of porous asphalt surface textures and internal structures allows the mixture to become a temporary storm-water retention and capable to channel excessive storm water. However, one of the major problems that affect the performance of porous asphalt mixtures is the clogging. Therefore, this study aims to determine the effect of clogging towards the permeability of porous asphalt. A total of 30 gyratory compacted samples were fabricated according to aggregate gradation recommended by Malaysia Public Works Department. The clogging materials were collected from two different location, residential area and major highway. The composition and characteristics of the clogging materials were investigated using Plastic Limit, Liquid Limit and Scanning Electron Microscope (SEM). The permeability test was conducted to investigate the permeability rate of the compacted samples based on different clogging material types, clogging concentrations and clogging cycles. In addition, the compacted samples were scanned using X-ray Computed Tomography to obtain the air voids distribution throughout the samples for comparison. It was found that higher concentration of clogging materials and clogging cycles reduced the rate of permeability. Clogging material collected from residential area has higher tendency to clog the void spaces compared to the one obtained from highway.


2010 ◽  
Vol 37 (11) ◽  
pp. 1414-1422 ◽  
Author(s):  
Feipeng Xiao ◽  
Serji Amirkhanian ◽  
Bradley Putman ◽  
Junan Shen

An improved understanding of the rheological and engineering properties of a rubberized asphalt concrete (RAC) pavement that contains reclaimed asphalt pavement (RAP) is important to stimulating the use of these recycled and by-product materials in asphalt mixtures. The uses of RAP and rubberized asphalt in the past have proven to be economical, environmentally sound, and effective in hot mix asphalt (HMA) mixtures across the US and the world. The objective of this research was to investigate the binder and mixture performance characteristics of these modified asphalt mixtures through a series of laboratory tests to evaluate properties such as the fatigue factor G*sinδ, rutting resistance, resilient modulus, and fatigue life. The results of the experiments indicated that the use of RAP and crumb rubber in HMA can effectively improve the engineering properties of these mixes.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Mohd Rosli Hainin ◽  
Nur Izzi Md. Yusoff ◽  
Mohd Fahmi Mohammad Sabri ◽  
Mohd Azizi Abdul Aziz ◽  
Mohd Anwar Sahul Hameed ◽  
...  

As natural aggregate sources are becoming depleted due to high demand in road construction and the amount of disposed waste material keeps increasing, researchers are exploring the use of alternative materials which could preserve natural sources and save the environment. In this study, steel slag was used as an aggregate replacement in conventional dense graded asphalt mixes (ACW14 and ACB28). Steel slag was selected due to its characteristics, which are almost similar to conventional aggregates, and the fact that it is easily obtainable as a by-product of the steel industry. The same gradations of mixtures were produced using normal crushed aggregate as control samples. The Marshall mix design system was used for sample preparation in accordance with Malaysian specifications. Samples of asphaltic concrete were subjected to the resilient modulus test, creep test and rutting test. Samples made from steel slag show significantly better results than conventional aggregate. Therefore, utilization of steel slag will reduce land fill, save natural resources and improve the strength of pavement to sustain a higher volume of vehicles. This will shift the gear in sustainable pavement construction, which is most desirable in today’s energy deficient world.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3156 ◽  
Author(s):  
Anik Gupta ◽  
Jorge Rodriguez-Hernandez ◽  
Daniel Castro-Fresno

Despite the numerous benefits for preserving the hydrological cycle, permeable pavement systems (PPSs) found their major application in parking spots and for light traffic scenarios due to their limited durability and strength. To make the PPSs suitable for heavy traffic conditions without significant distresses, research is shifting toward the adoption of novel binders and additives for designing multifunctional porous asphalt mixtures which make up the surface course of PPSs. Certain additives are well known for enhancing the durability of dense graded asphalt mixtures and improving fatigue and rutting resistance. However, the studies on the influence of additives on abrasion resistance and binder draindown, which are the common problems in porous asphalt mixtures (PAMs), are still not well established. This paper summarizes best practices performed on PAMs and recommends possible future research directions for its improvement. Particular emphasis is placed on strength and resilience of PAMs by incorporating additives like nanosilica, crumb rubber, warm-mix additives, fibers (such as cellulose, glass, steel, and synthetic fibers), and some eco-friendly materials. It was found that different additives seem to have different effects on the properties of PAMs. Moreover, the combination of additives has synergistic benefits for the performance of PAMs, especially in urban pavements.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2552
Author(s):  
Chao Chai ◽  
Yongchun Cheng ◽  
Yuwei Zhang ◽  
Bing Zhu ◽  
Hang Liu

This paper studies the mechanical properties of porous asphalt concrete with styrene-butadiene-styrene (SBS) polymer modified bitumen as the binder, steel slag as the aggregate and crumb rubber and basalt fiber as modifiers. First, the appearance, mechanics, chemical composition and high-temperature stability of steel slag were studied by some equipment. Then, three kinds of porous asphalt concrete with SBS polymer modified bitumen as binder were produced, Namely, crumb rubber modified porous asphalt concrete (CR-PAC), basalt fiber modified porous asphalt concrete (BF-PAC), and basalt fiber and crumb rubber composite modified asphalt concrete (CM-PAC). Finally, the properties of the three kinds of modified PACs were studied through the Marshall test, freeze-thaw splitting test, low-temperature splitting test, permeability test, and creep test. The results showed that the crush value and abrasion value of steel slag are 15.1% and 13.5%, respectively; it has excellent strength and abrasion. In addition, the steel slag shows a porous structure and it provides an interface basis for a better bond with bitumen. For the three PACs, the results showed that the Marshall stability, water stability, and low-temperature crack resistance of CM-PAC are all the best Furthermore, CM-PAC has better rutting resistance than two single modified PACs, based on creep test results. The CM-PAC in this study can be used as a new type of pavement material.


2020 ◽  
Vol 6 ◽  
pp. 42-60
Author(s):  
Abdalrhman Abrahim Milad ◽  
Ahmed Suliman B. Ali ◽  
Nur Izzi Md Yusoff

The possibility of using waste materials in road construction is of great interest as their utilisation may contribute to reducing the problems of hazard and pollution and conserve natural resources. Thus, there is an urgent need to find a sustainable method for using waste materials as a substitute in the standard asphalt binders. There are several concerns about the physical and chemical properties and mechanical performance of asphalt pavements incorporated with waste material in the effort to reduce permanent deformation of the road surface. This review article presents a brief discussion of the asphalt mixtures modified with waste material, and the recycled materials used as a modifier in the asphalt mixture. The present paper summarises the use of crumb rubber, crushed concrete, steel slag, glass fibre and plastic waste in asphalt mixtures. The use of waste materials as a modifier in asphalt mixture resulted in improved asphalt pavement performance. Results advocate that rubberised asphalt mixture with desired properties can be designed as an additive with a friendly environmental approach in construction materials. The researches that adopted the influence of usage, recycle waste material to improve the performance of the asphalt of the road are still limited compared to other construction fields. Doi: 10.28991/cej-2020-SP(EMCE)-05 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document