scholarly journals REMOVAL OF REFRACTORY COMPOUNDS FROM LANDFILL LEACHATE BY USING NANOFILTRATION

2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Titik Istirokhatun ◽  
Desinta Aswin Amalia ◽  
Wiharyanto Oktiawan ◽  
Arya Rezagama ◽  
M. Arief Budihardjo ◽  
...  

Landfill leachate is a serious problem during treatment of municipal solid waste using landfill method. Less attention has been paid for the treatment of this leachate while this leachate is usually highly polluted. This study investigated the performances of nanofiltration membrane for treatment of landfill leachate (from Semarang, Indonesia). Landfill leachate was treated using NF99 nanofiltration membrane (pore size 200 Da). Synthetic leachate was used in this research which follows the characteristics of real leachate. Microfiltration (MF) membrane was used as a pretreatment before Nanofiltration (NF). The effect of pressure on membrane performance was observed. The membrane performance was examined for permeate flux and membrane rejection for TSS, TDS, and COD then compared to the effluent quality of existing leachate treatment. The rejection of COD, TSS and TDS were 96, 100 and 62%, respectively. The results suggest that the effluent had much better quality than the existing installation leachate treatment.

Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 239
Author(s):  
Mariane Carolina Proner ◽  
Ingrid Ramalho Marques ◽  
Alan Ambrosi ◽  
Katia Rezzadori ◽  
Cristiane da Costa ◽  
...  

The mussel-inspired method has been investigated to modify commercial ultrafiltration membranes to induce antifouling characteristics. Such features are essential to improve the feasibility of using membrane processes in protein recovery from waste streams, wastewater treatment, and reuse. However, some issues still need to be clarified, such as the influence of membrane pore size and the polymer concentration used in modifying the solution. The aim of the present work is to study a one-step deposition of dopamine (DA) and polyethyleneimine (PEI) on ultrafiltration membrane surfaces. The effects of different membrane molecular weight cut-offs (MWCO, 20, 30, and 50 kDa) and DA/PEI concentrations on membrane performance were assessed by surface characterization (FTIR, AFM, zeta potential, contact angle, protein adsorption) and permeation of protein solution. Results indicate that larger MWCO membranes (50 kDa) are most benefited by modification using DA and PEI. Moreover, PEI is primarily responsible for improving membrane performance in protein solution filtration. The membrane modified with 0.5:4.0 mg mL−1 (DA: PEI) presented a better performance in protein solution filtration, with only 15% of permeate flux drop after 2 h of filtration. The modified membrane can thus be potentially applied to the recovery of proteins from waste streams.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mlungisi Martin Ngoma ◽  
Machodi Mathaba ◽  
Kapil Moothi

AbstractThis paper focuses on modifying a PES membrane with acid-functionalised carbon nanotubes (CNT) for industrial wastewater treatment. Embedding acid functionalised carbon nanotubes (CNTs) within the membrane matrix would increase the membrane flux by increasing the membrane pore size and surface area, rejection and thermal stability. Pure PES membranes were prepared by phase inversion method and infused with CNTs at 2.5, 5, 7.5 and 10 wt% loading to fabricate PES/2.5 wt% CNT, PES/5 wt% CNT, PES/7.5 wt% CNT and PES/10 wt% CNT membranes respectively. Characterisation was performed using Transmission Electron Microscopy (TEM) to determine CNT morphology, X-ray Diffraction (XRD) to determine the functional groups attached to CNTs, Thermogravimetric Analysis (TGA) to determine the thermal stability of the membranes, Scanning Electron Microscope (SEM) to determine membrane morphology, Bunauer-Emmett-Teller (BET) method to obtain pore size information and Contact Angle (CA) to determine the membrane hydrophilicity. Membrane performance was then evaluated with a dead-end stirred cell using industrial wastewater containing traces of Cu, Fe, Ni, Zn and Cl. Permeate flux results showed a direct proportion relationship with increasing CNT loading and increasing pressure (100 kPa, 300 kPa, 500 kPa, 700 kPa, 900 kPa and 1100 kPa). PES/5 wt% CNT membrane showed the most enhanced performance compared to the other membranes, achieving reasonably high flux of 43.7 L/m2h and rejection of 89.6% Cu, 100% Fe, 90.5% Ni, 68.8% Zn and 99.99% Cl at 300 kPa. The results obtained showed that the PES membrane embedded with functionalised CNTs could be used for the treatment of industrial wastewater.


2016 ◽  
Vol 22 (8) ◽  
pp. 677-687 ◽  
Author(s):  
Szilvia Banvolgyi ◽  
K Savaş Bahçeci ◽  
Gyula Vatai ◽  
Sandor Bekassy ◽  
Erika Bekassy-Molnar

The present work studies the use of nanofiltration for the production of red wine concentrate with low alcohol content. Factorial design was applied to measure the influences of transmembrane pressure (10–20 bar) and temperature (20–40 ℃) on the retention of valuable components such as anthocyanins and resveratrol, and on the nanofiltration membrane performance. The highest retention of anthocyanin and resveratrol was achieved at low temperature (20 ℃), while the high transmembrane pressure (20 bar) was found to increase the permeate flux considerably. The experiments demonstrated that nanofiltration appears as a valid technique for the production of low alcohol content red wine concentrate. Reduction of volume by a factor of 4, leads to 2.5–3 times more anthocyanins and resveratrol in the wine concentrates. The final new wine products – obtained by using various forms of reconstitution of the concentrated wine – had low alcohol content (4–6 % by volume) and their sensory attributes were similar to those of the original wine.


2011 ◽  
Vol 356-360 ◽  
pp. 2908-2913
Author(s):  
Si Ruo Zhang ◽  
Tie Jian Zhang ◽  
Jun Liang Liu ◽  
Yan Li

To solve the problem of huge investment and high difficulty of individually treating landfill leachate, the experiment adopted A2O simulated wastewater treatment plant to treat landfill leachate combined with municipal sewage.Under the conditions of 11h HRT, 1.0-2.0mg/L DO concentration, 200% mixture reflux proportion, 80% sludge reflux proportion and 20d sludge age, adding langdfill leachate to municipal sewage with the proportion of 1:1500, 1:1000 and 1:600, the effluent concentration can achieve the first order A standard of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. When the proportions come to 1:400 and 1:200,the effluent quality can’t reach the standard. After a comprehensive consideration of water quality and landfill leachate treatment amount in practice, we can draw a conclusion that the 1:600 proportion is the most suitable one of adding landfill leachate to municipal sewage.


Author(s):  
Xiaolin Jia ◽  
Kuiling Li ◽  
Baoqiang Wang ◽  
ZhiChao Zhao ◽  
Deyin Hou ◽  
...  

Abstract As a thermally induced membrane separation process, membrane distillation (MD) has drawn more and more attention for the advantages of treating hypersaline wastewaters, especially the concentrate from reverse osmosis (RO) process. One of the major obstacles in widespread MD application is the membrane fouling. We investigated the feasibility of direct contact membrane distillation (DCMD) for landfill leachate reverse osmosis concentrate (LFLRO) brine treatment and systematically assessed the efficiency of chemical cleaning for DCMD after processing LFLRO brine. The results showed that 80% water recovery rate was achieved when processing the LFLRO brine by DCMD, but the membrane fouling occurred during the DCMD process, and manifested as the decreasing of permeate flux and the increasing of permeate conductivity. Analysis revealed that the serious flux reduction was primarily caused by the fouling layer that consist of organic matters and inorganic salts. Five cleaning methods were investigated for membrane cleaning, including hydrogen chloride (HCl)-sodium hydroxide (NaOH), ethylene diamine tetraacetic acid (EDTA)-NaOH, critic acid, sodium hypochlorite (NaClO) and sodium dodecyl sulphate (SDS) cleaning. Among the chemical cleaning methods investigated, the 3 wt.% SDS cleaning showed the best efficiency at recovering the performance of fouled membranes.


2019 ◽  
Vol 2 (5) ◽  
pp. 177-183
Author(s):  
Le Ai Nguyen ◽  
Trinh Thi Mong Le

Constructed wetlands have been widely applied for removing pollutants in the leachate recently. In this study, constructed wetland system combined vertical flow and horizontal flow, using Vetiveria zizanioides L. and Phragmites australis, was set in a laboratory scale to assess the leachate treatment ability. The landfill leachate was added to the system with increasing concentration to evaluate the treatment ability by the time. The results showed that the removal efficiency reached the highest when the COD concentration was 575 mg/L, including BOD5 (96.48%), COD (83.24%), total nitrogen (91.43%), total phosphorus (77.84%), ammonia nitrogen (86.47%), and color (87.91%). Furthermore, the treated effluent quality reached the class A of the Vietnamese standard on industrial wastewater quality. Beside, when physicochemically treated leachate (coagulation – flocculation) (COD concentration was 1255.50 mg/L), was added to the system, the removing efficiencies remained stable by the time, with the efficiency of ammonia nitrogen removing (93.48%), BOD5 (94.86%), total phosphorus (96.67%), total nitrogen (95.81%). Besides, the treated effluent quality reached the class B of the Vienamese standard on industrial wastewater quality. On other hand, COD and color removing efficiencies were also high at the first stage and tended to reduce rapidly by the time. Therefore, the EM called Bayer Pond Plus added to the system could increase and substained the removing efficiencies of COD (66.61%), color (81.40%). The results of this study showed that constructed wetland system had potential in the landfill leachate treatment.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
W. Youravong ◽  
M. Phukdeekhong ◽  
P. Taksinpatanapong

The experiment was carried out to investigate the influence of membrane pore size and hydrophobicity on the quality of clarified pineapple wine and fouling characteristics, using stirred cell dead–end microfiltration. The test membranes were mixed cellulose acetate (MCE, pore size 0.45 and 0.22 μm), modified polyvinylidene fluoride (MPVDF, 0.22 μm) and polyethersulfone (PESF, 0.22 μm). It was found that all types of membrane successfully clarified the pineapple wine. The membrane pore size and hydrophobicity played an importance role in membrane fouling, both reversible and irreversible. Regarding the permeate flux and fouling, 0.45 μm MCE was the most suitable for pineapple wine clarification. However, intensive organoleptic test with pilot scale would be needed.


2012 ◽  
pp. 217-224 ◽  
Author(s):  
Vesna Vasic ◽  
Marina Sciban ◽  
Aleksandar Jokic ◽  
Jelena Prodanovic ◽  
Dragana Kukic

Stillage is one of the most polluted waste products of the food industry. Beside large volume, the stillage contains high amount of suspended solids, high values of chemical oxygen demand and biological oxygen demand, so it should not be discharged in the nature before previous purification. In this work, three ceramic membranes for microfiltration with different pore sizes were tested for stillage purification in order to find the most suitable membrane for the filtration process. Ceramic membranes with a nominal pore size of 200 nm, 450 nm and 800 nm were used for filtration. The influence of pore size on permeate flux and removal efficiency was investigated. A membrane with the pore size of 200 nm showed the best filtration performance so it was chosen for the microfiltration process.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim Demir ◽  
Ismail Koyuncu ◽  
Serkan Guclu ◽  
Senol Yildiz ◽  
Vahit Balahorli ◽  
...  

Komurcuoda leachate treatment plant, Istanbul, which consists of membrane bioreactor (MBR) and nanofiltration (NF) system, faced rapid flux decline in membranes after 3-year successful operation. To compensate rapid flux decline in membranes, the fouled membranes were renewed but replacement of the membranes did not solve the problem. To find the reasons and make a comprehensive analysis, membrane autopsy was performed. Visual and physical inspection of the modules and some instrumental analysis were conducted for membrane autopsy. Membranes were found severely fouled with organic and inorganic foulants. Main foulant was iron which was deposited on surface. The main reason was found to be the changing of aerator type of MBR. When surface aerators were exchanged with bottom diffusers which led to increasing of dissolved oxygen (DO) level of the basin, iron particles were oxidized and they converted into particulate insoluble form. It was thought that probably this insoluble form of the iron particles was the main cause of decreased membrane performance. After the diagnosis, a new pretreatment alternative including a new iron antiscalant was suggested and system performance has been recovered.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 91 ◽  
Author(s):  
Mahfar Mazani ◽  
Sadegh Aghapour Aktij ◽  
Ahmad Rahimpour ◽  
Naser Tavajohi Hassan Kiadeh

In this study, Cu-BTC (copper(II) benzene-1,3,5-tricarboxylate) metal-organic frameworks (MOFs) were incorporated into the structure of polysulfone (PSf) ultrafiltration (UF) membranes to improve the membrane performance for landfill leachate treatment, whereby different concentrations of Cu-BTC (0.5, 1, 1.5, 2 wt%) were added to the PSf casting solution. The successful incorporation of Cu-BTC MOFs into the modified membranes was investigated by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDX). The Cu-BTC-modified PSf membranes showed higher performance in terms of flux and rejection, as compared to the neat PSf membrane. For example, the pure water flux (PWF) of neat membrane increased from 111 to 194 L/m2h (LMH) by loading 2 wt% Cu-BTC into the membrane structure, indicating 74% improvement in PWF. Furthermore, the flux of this membrane during filtration of landfill leachate increased up to 15 LMH, which indicated 50% improvement in permeability, as compared to the neat membrane. Finally, the modified membranes showed reasonable antifouling and anti-biofouling properties than the blank membrane.


Sign in / Sign up

Export Citation Format

Share Document