scholarly journals Analyzing the major ions and trace elements of groundwater wells in Kuala Langat, Selangor

2021 ◽  
Vol 17 (1) ◽  
pp. 56-61 ◽  
Author(s):  
Hazimah Haspi Harun ◽  
Mohamad Roslan M. K. ◽  
S. Nurhidayu ◽  
Zulfa Hanan Asha’ari ◽  
Faradiella Mohd Kusin

The analysis of trace elements and major ions on groundwater wells in Kuala Langat become the aim of this paper for the purposes to investigate the quality of the groundwater to be considered as a suitable alternative water source for domestic purposes. The groundwater sampling was conducted in thirteen stations of groundwater wells. The groundwater samples were taken from the groundwater wells which scatter in agricultural areas in Kuala Langat, Selangor. The major ions parameters have analyzed in the groundwater samples were calcium, magnesium, potassium, bicarbonate, chloride, and sulfate (Ca2+, Mg2+, K+, Na+, HCO3 -, Cl-, SO4 2-). Meanwhile, the trace element parameters were aluminum, iron, manganese, strontium, zinc, and copper (Al, Fe, Mn, Sr, Zn, and Cu). Principal Component Analysis (PCA) was conducted to determine the influence of major ions and trace elements concentration in groundwater. Chloride, potassium, magnesium, strontium, calcium, and bicarbonate (Cl-, Na+, K+, Mg2+, Sr2+, Ca2+, and HCO3 -) were principal parameters in the first component of PCA analysis. The concentration of trace elements shows iron is the high concentration in groundwater samples. Hence, the concentration of iron in current sampling shows exceed the recommended level for raw water of the Ministry of Health. The influences from seawater intrusion and Sodium Adsorption Ratio (SAR) in groundwater also have been discussed.

2020 ◽  
Vol 69 (4) ◽  
pp. 398-414 ◽  
Author(s):  
Vasant Wagh ◽  
Shrikant Mukate ◽  
Aniket Muley ◽  
Ajaykumar Kadam ◽  
Dipak Panaskar ◽  
...  

Abstract The integration of pollution index of groundwater (PIG), multivariate statistical techniques including correlation matrix (CM), principal component analysis (PCA), cluster analysis (CA) and various ionic plots was applied to elucidate the influence of natural and anthropogenic inputs on groundwater chemistry and quality of the Kadava river basin. A total of 80 groundwater samples were collected and analysed for major ions during pre- and post-monsoon seasons of 2012. Analytical results inferred that Ca, Mg, Cl, SO4 and NO3 surpass the desirable limit (DL) and permissible limit (PL) of Bureau of Indian Standards (BIS) and the World Health Organization (WHO) in both the seasons. The elevated content of total dissolved solids (TDS), Cl, SO4, Mg, Na and NO3 is influenced by precipitation and agricultural dominance. PIG results inferred that 52.5 and 35%, 30 and 37.5%, 12.5 and 20%, 2.5 and 5% groundwater samples fall in insignificant, low, moderate and high pollution category (PC) in pre- and post-monsoon seasons, respectively. PC 1 confirms salinity controlled process due to high inputs of TDS, Ca, Mg, Na, Cl and SO4. Also, PC 2 suggests alkalinity influence by pH, CO3, HCO3 and F content. PIG and statistical techniques help to interpret the water quality data in an easier way.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Farooque Lanjwani ◽  
Muhammad Yar Khuhawar ◽  
Taj Muhammad Jahangir Khuhawar

AbstractThe study examines the water quality of Shahdadkot, Qubo Saeed Khan and Sijawal Junejo talukas of Qambar Shahdadkot District, less affected by industrial contamination. A total of 38 groundwater samples were collected and analysed for 28 parameters. The results indicated that 57.89% samples were not suitable for drinking purpose with total dissolved solids above than maximum permissible limit of World Health Organization (WHO) (1000 mg/L). The pH, total phosphate, orthophosphate and nitrite were within WHO limits. The concentration of essential metals more than half samples, fluoride in 60.52% and heavy metals 0–50% were contaminated higher than permissible limits of WHO. The statistical analysis of water quality parameters was also carried out to evaluate coefficient of determination among the parameters, cluster analysis and principal component analysis. Water quality determined for irrigation based on Kelly index (KI), sodium percentage (Na%), chloride–sulphate ratio, sodium adsorption ratio, permeability index (PI), chloroalkaline indices 1 (CAI-1), residual sodium carbonate and chloride bicarbonate ratio indicated that samples (55 to 100%) could be used for irrigation purposes. The consumption of water with high concentration of salts and fluoride above the permissible limits may be a cause of a number of diseases in the area.


2019 ◽  
Vol 50 (3) ◽  
pp. 974-989 ◽  
Author(s):  
Bahareh Yazdizadeh ◽  
Hadi Jafari ◽  
Rahim Bagheri

Abstract Granitic groundwaters are important resources in arid regions. However, they are not always pure due to having appreciable amounts of trace elements. The present study was conducted to investigate chemical compositions for finding controls on distribution of heavy metals and natural radioelements (U and Th) in groundwater resources of Shir-Kuh granitoid aquifer (SGA), central Iran. Thirty water samples were collected and analyzed for major and trace elements. The average values of electrical conductivity (EC) and pH are 624 μs/cm and 7.5, respectively. The dominant groundwater type is Ca-HCO3, as a result of the calcite dissolution and biotite weathering. Principal component analysis in support of mass balance studies recognizes dissolution of fracture-filling sediments and rock mineral weathering as the main factors enhancing major ions in SGA. These processes also release trace elements in decreasing order of Sr > Ba > Sn > W > Cu > U > Zn > Th. Weathering of biotite enclosing accessory minerals of monazite and zircon is introduced as the main source of radio-trace elements in SGA. Health concerns are currently related to U in drinking groundwater, as the maximum concentration (13.6 μg/L) approaches the Iranian drinking standard of 15 μg/L, in response to the oxidizing nature of the groundwater, calcite dissolution-related mobilization, and the degree of the water–rock interactions.


2013 ◽  
Vol 726-731 ◽  
pp. 3424-3428
Author(s):  
Lin Hua Sun

Hydro-geochemistry is important for water disaster controlling as it can be used for either understanding of hydrological evolution or water source discrimination. Groundwater samples from the sandstone aquifer in Xutuan coal mine, northern Anhui Province, China have been collected for major ion chemical analysis to understand the operating mechanism of geochemical processes for variation of groundwater chemistry, which will be useful for improving the understanding of hydro-chemical systems in coal mine. The results suggest that they are medium to slightly (6.8 to 8.64 with an average of 7.61) with high concentration of total dissolved solids (943 and 1362 mg/L with mean of 1171 mg/L)). Most of the groundwater samples are classified as Na- HCO3-Cl and Na-Cl- HCO3 types according to their relative concentrations of cations and anions. Correlation between ion concentrations, as well as principle component analysis imply that dissolution of dolomite, halite, gypsum, silicate weathering and ion exchange are responsible for the chemical variations of the groundwater.


2020 ◽  
pp. 73-89
Author(s):  
Kofoworola Olatunde ◽  
Modupe Sarumi ◽  
Sadiq Abdulsalaam ◽  
Babatunde Bada ◽  
Funmilola Oyebanji

Groundwater forms a very important part of the water supply chain and its quality can be affected by improperly constructed septic tanks used by homeowners in peri-urban locations such as Abeokuta in recent times. Sixty groundwater samples collected from hand-dug wells ≤15m from septic tanks were analysed for physicochemical and bacteriological parameters using standard procedures. Results were integrated with multivariate and hydrogeochemical analyses to assess the effect improperly built septic tanks have on groundwater quality around the Federal University of Agriculture, Abeokuta. The range of values for the measured parameters include: pH (6.26 – 8.66), EC (83 – 1035 μS cm-1), TDS (42 – 621 mg L-1), Mg2+ (2 – 60 mg L-1), NO3- (5.09 – 17 mg L-1), Fe (-.04 – 5.32 mg L-1), BOD (0.1 – 13.2) and E. Coli (ND – 41×10 cfu mL-1). The abundance of major ions are in the order Ca2+˃Mg2+˃K+˃ Na+ and Cl- ˃SO42- >HCO3- >NO3- ˃PO42-. The piper trilinear plot shows that the dominant hydrochemical facies in the study area is the Ca2+–Cl- type. A correlation analysis and a principal component analysis both reflect intrusions from biological wastes such as surrounding septic tanks or municipal waste disposals as well as dissolutions from basal rocks. The possibility of infiltration from sewage into groundwater is confirmed by the number of samples with high BOD, NO3-, and E. coli concentrations. Contamination of groundwater with sewage exposes the populace to acute excreta-related illness. This therefore calls for stringent monitoring and management measures to be put in place by relevant regulatory authorities to safeguard the human health and environment within the study area.


2018 ◽  
Vol 39 (1) ◽  
pp. 109-117
Author(s):  
Ikram Mokeddem ◽  
Meriem Belhachemi ◽  
Touhami Merzougui ◽  
Noria Nabbou ◽  
Salih Lachache

AbstractGroundwater samples from Turonian aquifer of Béchar region were evaluated as drinking and irrigation water sources. physicochemical parameters including pH, EC, TH, Na+, Ca2+, Mg2+, Cl−, SO42– and NO3− were determined for 16 water sampling points. These characterizations show that the groundwater is fresh to brackish, slightly alkaline and the major ions are Na+, Ca2+, Mg2+, Cl− and SO42–. According to WHO standards, 50% of the analysed water are suitable as a drinking source while the other samples are not in compliance with drinking water standards. This non-compliance is basically due to the high concentrations of Na+, Cl−, and SO42– requesting further treatment to reach the stringent standards. According to the results of nitrate concentrations, anthropogenic source seems to influence the groundwater quality. The present study shows that Béchar groundwater may represent an important drinking and irrigation water source. However, a specific management strategy should be adapted in order to avoid the contamination by anthropogenic sources.


2021 ◽  
pp. 2296-2306
Author(s):  
Mahmood F. Abed ◽  
Ghazi Zarraq ◽  
Salwa H. Ahmed

Background: The present study was conducted to highlight the importance of environmental pollution and its negative impacts on aquatic, plants and animals lives, especially in industrial areas. Objective: This research involved studying the hydrogeochemistry of the groundwater and assessing its quality for irrigation and domestic purposes using quality parameters.  In this study, 33 groundwater samples were collected from wells during May 2013 and were analyzed for major ions and TDS. Results: The hydrogeochemical facies of groundwater were identified using the Gibbs model and Chloro – alkaline  indices. The results of the Gibbs graph suggest that groundwater chemistry is controlled by evaporation factors. It was found that the values of chloro – alkaline  indices were positive, indicating ionic exchange between Na+ in groundwater with Ca2+ and Mg2+ in the aquifer material. Conclusion: The current study of corrosivity ratio showed that groundwater wells are unsuitable for domestic uses.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Hanaa A. Megahed

Abstract Background The limited water resources in arid environments in addition to the effect of agricultural and anthropogenic activities on groundwater quantity and quality necessitate paying more attention to the quality assessment of these resources. The present studies assess the quality of groundwater resources in Wadi El-Assiuti, south Egypt, and evaluate their suitability for drinking and irrigation purposes. To achieve this goal, 159 groundwater samples were collected from the outlet and central parts of the Wadi El-Assiuti during the autumn season (October–November) of 2019 and were analyzed for major ions, trace elements and heavy metals. Results The results indicate that the TDS values range between 1972 and 6217 ppm, while the concentration of trace elements (Fe++, Mn++ and Ni+) ranges between 0.05 and 0.46, 0.11 and 0.221 and 0.01 and 0.6 ppm, respectively. These results show that all groundwater samples are clearly unacceptable and inappropriate for human drinking due to their high content of total dissolved solids, trace elements and heavy metals, particularly in the majority of samples according to World Health Organization (WHO) guidelines and the Egyptian standards (Eg. St. 2007) for drinking water quality. Spatial analysis of the TDS values in geographic information system environment indicates that the salinity is higher in the northeast and gradually decreases southward. Sodium adsorption ratio, US Salinity Laboratory classification (1954), residual sodium carbonate, soluble sodium percentage and permeability index show that most groundwater samples are suitable for irrigation purposes. Conclusions The integrated approach provided in this study highlights the spatially distributed suitability of groundwater resources in Wadi El-Assiuti and can be applied in similar basins worldwide.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3477
Author(s):  
Zahid Ullah ◽  
Muhammad Afnan Talib ◽  
Abdur Rashid ◽  
Junaid Ghani ◽  
Asfandyar Shahab ◽  
...  

Arsenic (As) contamination in drinking groundwater is a common environmental problem in Pakistan. Therefore, sixty-one groundwater samples were collected from various groundwater sources in District Sanghar, Sindh province, Pakistan, to understand the geochemical behavior of elevated As in groundwater. Statistical summary showed the cations and anions abundance in decreasing order of Na+ > Ca2+ > Mg2+ > K+, and HCO3− > Cl− > SO42− > NO3−. Arsenic was found with low to high concentration levels ranging from 5 µg to 25 µg/L with a mean value of 12.9 µg/L. A major water type of groundwater samples was mixed with NaCl and CaHCO3 type, interpreting the hydrochemical behavior of rock–water interaction. Principal component analysis (PCA) showed the mixed anthropogenic and natural sources of contamination in the study area. Moreover, rock weathering and exchange of ions controlled the hydrochemistry. Chloro-alkaline indices revealed the dominance of the reverse ion exchange mechanism in the region. The entropy water quality index (EWQI) exposed that 17 samples represent poor water, and 11 samples are not suitable for drinking.


Author(s):  

Implementation of big scale projects on construction and operation of waterworks facilities is a serious factor of intervention into aquatic ecosystems functioning. The Bureya River and its tributaries water chemical composition was characterized with the results of the river water monitoring within the zone of the Nizhne-Bureysk hydro power station construction over the period of 2011-2014, and considerable variations of the small rivers’ water physical/chemical characteristics were demonstrated. Seasonal and many-year dynamics of the trace elements dissolved forms content was revealed. Higher concentrations of iron, manganese, copper, and mercury, as well as their considerable concentrations connected with the territory natural features were established. Small rivers’ waters that drain mostly effusive rocks are characterized by higher concentrations of iron and manganese while sediments are characterized by high concentration of aluminum. The seasonal and many-year character of the microelements dissolved forms is diverse and is mostly determined by the hydrological factor. In the high water 2013 a considerable increase in copper and barium runoff was registered in all tributaries while increase of aluminum concentration was found only in the Bureya, insignificant increase of the iron content was seen in all tributaries, and cadmium concentration increased only in some watercourses. As for all other trace elements, no marked content increase was observed.


Sign in / Sign up

Export Citation Format

Share Document