scholarly journals Effect of the different level of a dry feed additive on the lupin silage quality

Author(s):  
Petr Doležal ◽  
Josef Rotter ◽  
Jan Doležal ◽  
Václav Pyrochta ◽  
Jaroslav Poul

In the experiment, the effect of additive on the fermentation quality of lupine was examined, by comparing with the untreated control. Fresh green Lupine (Lupines lupine), variete Juno, dry matter content 187.15 g/kg at full waxy stage of maturiy were chopped to the legth of cut ca 30–50 mm. The crop was artificially wilted for a periody 24 h and ensiled as described above. Lupine were ensiled for 98 days in laboratory silos, capacity about 4 L alone or with supplementation of feed additive (5, 10, 20, 30, 40, 50 or 70 kg/tone forage respectively). The composition and as effective substances of this silage ingredient were dry whey (30%), maize meal (40%) and dry molases (30%). The silages fermented rapidly and changes in volatile fatty acids (VFA) production (P<0.01) and in sum of acids were noted. The different supplementation of additive in our experiment conditions increased significantly (P<0.01) the dry matter content, and decreased statistically significantly (P<0.01) the pH value. The higher DM content was in all experimental silages, but the highest DM content (P<0.01) was in silage with addition of 70 kg/t (231.58Ī0.91 g/kg). All treated silages were well fermented with low levels of ammonia and pH. The different addition of this aditive increased significantly (P<0.01) the contents of lactic acid and total content of acids in comparison with control silage. The experimental silage with higher (5%, resp. 7%) feed supplementation was of better quality (significantly higher ratio LA/sum of acids, higher content of lactic acid, lower NH3 content and pH value) than the control silage, or silage with lower concentration. In experiment feed additive–treated silages (by groups of 5 or 50 and 70 kg/t) had significantly higher alcohol content than untreated silage. It was concluded that feed additive used as a silage additive improved fermentation of lupine, reduced acetic acid and ammonia production and increased silage nutritive value.

2013 ◽  
Vol 53 (5) ◽  
pp. 427 ◽  
Author(s):  
J. L. Jacobs ◽  
G. N. Ward

The efficient production and utilisation of home-grown feed is considered one of the key factors that underpins the profitability of dairy systems in southern Australia. The use of winter forage cereals for grazing and silage provides an opportunity to achieve high dry matter yields over the winter and spring period. However, questions remain on the nutritive value of whole-crop cereal silage and its subsequent use as a production feed in livestock systems. This experiment examined the nutritive characteristics of winter wheat, triticale, forage peas and bi-crops of cereals and peas sown at different proportions, cut for silage at the soft dough growth stage of the cereals and their subsequent silage nutritive characteristics and fermentation patterns when ensiled with and without bacterial inoculant additives over 2 consecutive years. The estimated metabolisable energy (ME) (Year 1) and crude protein (CP) (Years 1 and 2) concentrations of the forage pea before and after ensiling were higher (P < 0.05) than all other forages in both years. The cereal–pea mixes had similar estimated ME values to the cereal monocultures both before harvesting and as silage, although there were significant improvements in CP concentration at the higher rates of pea inclusion. All resultant silages were well fermented as indicated by low pH, low proportions of total N as ammonia-N and high lactic acid concentrations. There were marked differences in the proportions of lactic acid and acetic acid in the pea silages between years and this is likely a result of dry matter content differences at ensiling. There was no effect of silage additives on resultant silage nutritive characteristics or fermentation parameters indicating that well fermented silage can be achieved without the additional cost of using a silage additive. This study has indicated that forage peas can be ensiled with winter cereals and produce silages that have higher CP concentrations than cereal silage but with similar fermentation parameters. Furthermore, this experiment has highlighted the potential of growing a monoculture of forage peas for ensiling with the resulting silage having higher estimated ME and CP concentrations.


Author(s):  
Jiří Skládanka ◽  
Petr Doležal

The aim of this study was to evaluate the effect of a chemical preservative supplementation on the quality of lupine silage as compared with untreated controls. Fresh green Lupine (Lupines lupine), variete Juno, dry matter content 187.15 g / kg at full waxy stage of maturity were chopped to the legth of cut ca 30–50 mm. The crop was artificially wilted for a periody 24 h and ensiled as described above. Lupine were ensiled for 98 days in laboratory silos, capacity about 4 l alone or with supplementation of chemical preservative 3 and 6 l/tone forage respectively). The relatively mean WSC content and the low buffering capacity of lupine crop provided for a good preservation with the chemical preservative. The best quality of fermentation process and nutritive value was found in silages with the supplement of acid mixtures dosed at 6 l / t since they showed not only a better content of net energy (NEL) and CP but also a significantly higher ethanol content, a more favourable RDP content and a hig­her starch content than the control. The supplement of preservatives resulted in the increased DM content in stored silage, in the increased escape of silage effluents and in the inhibited (P < 0.01) formation of acetic acids (19.8±2.17 g / kg DM) in comparison with control silage. In chemical trea­ted silages (3 l/t) was also increased level (P < 0.01) of lactic acid (116.9±2.61 g / kg DM) and total acids in kg of dry matter (143.4±3.64 g / kg), but decreased level of pH value (4.03±0.01), acidity water extract (KVV–1221.1±11.51 mg KOH/100 g silage), titration acidity (FT–0.107±0.002), and of NH3 content (664.1±7.51 mg / kg DM).


2017 ◽  
Vol 48 (2) ◽  
pp. 47-53
Author(s):  
J. Hakl ◽  
R. Loučka ◽  
J. Jirmanová ◽  
V. Jambor

Abstract Maize genotype selection represents a practical tool influencing forage yield and quality. The main objective was to investigate the contribution of genotype, site, and year to variability of maize yield and quality in the environment of Central Europe. Totally 63 maize genotypes at 11 sites over a 7-year period were evaluated for dry matter yield (DMY), dry matter content (DM), starch, cob, neutral detergent fibre (NDF), in situ digestibility of stover NDF (NDFD), and organic matter (OMD). The genotype showed the highest variability from all factors where stover NDFD varied from 261 to 529 g kg-1 and stover OMD from 376 to 609 g kg-1. In contrast to the whole-plant, variability of stover traits was more closely related to NDF than the DM content. Under standardized plant DM, all tested factors were significant and allowed interpretation of 70 and 60% of total variation of yield and quality for stover and whole plant, respectively. The average contributions of genotype, site, and year were 30, 7, and 5%, respectively. For variability in plant productivity and nutritive value, the importance of maize genotype selection was more than two times higher than the contribution of environment.


2011 ◽  
Vol 50 (No. 12) ◽  
pp. 553-560 ◽  
Author(s):  
P. Doležal ◽  
V. Pyrochta ◽  
J. Doležal

This study deals with effects of pressing of ensiled sugar-beet pulp and of application of a chemical preservative on the quality of fermentation process. The experimental silages had a better sensory evaluation than the control ones. In silages treated chemically with a mixture of acids, statistically significantly (P &lt; 0.01) higher dry matter content, lowest pH value, the value of lactic acid and the lowest content of all acids in dry matter were found after 180 days of storage from the beginning of the experiment. The statistically significantly (P &lt; 0.01) highest lactic acid content (43.39 &plusmn; 1.25 g/kg DM) was determined in the control pressed silage. The highest LA/VFA ratio (1.40 &plusmn; 0.18) was calculated for non-pressed experimental silage (D &ndash; 3 l/t of KEM). As compared with untreated control the highest percentage (P &lt; 0.01) of lactic acid and of all fermentation acids was found out in silage D treated with 3 l/t of KEM (58.18 &plusmn; 0.47 g/kg DM). Undesirable butyric and propionic acids were not found in chemically treated silage samples (C, D, E, F). However, the highest (P &lt; 0.01) contents of butyric acid (26.37 &plusmn; 0.91 g/DM) and propionic acid (4.58 &plusmn; 0.78 g/DM) were measured in untreated non-pressed silage samples (B). The highest (P &lt; 0.01) contents of acetic acid and ethanol were found in control silage samples. The quality of these silages was evaluated as very low. &nbsp;


1936 ◽  
Vol 26 (2) ◽  
pp. 212-238 ◽  
Author(s):  
H. E. Woodman ◽  
R. E. Evans ◽  
A. Eden

The paper records the results of an investigation into the composition, digestibility and nutritive value of marrow stem kale (both unthinned and singled-out) and thousand head kale. A number of the main findings are recorded below.The average dry-matter content of unthinned marrow stem kale during September and October was 13·3 per cent. During the following January it had reached a slightly higher level, namely, 14·2 per cent. Singling out of the marrow stem kale appeared to exercise little effect on the dry-matter content of the crop. Thousand head kale, with an average dry-matter content of 15·8 per cent., is significantly richer in dry matter than the marrow stem kale, although this advantage was offset by the lower yield, in terms of green matter, given per acre by the thousand head kale.


1968 ◽  
Vol 71 (1) ◽  
pp. 67-71 ◽  
Author(s):  
W. L. Johnson ◽  
W. A. Hardison ◽  
A. L. Ordoveza ◽  
L. S. Castillo

SummaryDry-matter intake (D.M.I.) fromPanicum maximum(guinea grass) was studied in digestibility trials with Holstein and water buffalo bulls and in a feeding trial with lactating cows.Differences in voluntary D.M.I. per unit body weight0·73between the Holsteins and water buffaloes were not significant. Average D.M.I. for all bulls in all main trials was 2·16 kg per 100 kg B.W. Average D.M.I. by the lactating cows was 2·08 kg per 100 kg B.W., for all practical purposes the same as for the bulls.D.M.I. was not related to stage of maturity or season of harvest of the guinea grass. Intakes of digestible protein, T.D.N., and digestible energy in different seasons and at different growth stages were related to the percentage of those nutrients in the grass.Correlation coefficients were 0·68 between D.M.I. and B.W.0·73, 0·59 between D.M.I. and T.D.N. content, and 0·58 between D.M.I. and crude protein content, D.M.I. was not closely related to dry-matter content (r= 0·30) or crude fibre content (r= 0–01) of the guinea grass.


2007 ◽  
pp. 211-218 ◽  
Author(s):  
Milan Adamovic ◽  
Aleksandra Bocarov-Stancic ◽  
Ivanka Milenkovic ◽  
Snezana Strbac ◽  
Ivana Adamovic

The chemical composition, fermentation quality, mycological and mycotoxicological analyses of silage mixture, made of ground corn grain and spent P. ostreatus mushroom substrate, were investigated in this paper. Dry matter content in high moisture ground corn, at the time of ensiling was 70%, and in the spent substrate (on the Salt Cedar wood shaving basis) was 52.7%. Corn grain to spent substrate ratio in trials was: 100:0% (I), 90:10% (II), 80:20% (III) and 70:30% (IV) respectively. Content of the lignocellulose fractions in silage was slightly increased, and protein content was slightly decreased with the increase of spent substrate content. Contents of the VFA (volatile fatty acids) in silage, pH value, and NH3-N content were for the silage of very good quality. In the spent substrate 9 mold species were found, from which the most frequent were genus Penicillium, Paecilomyces variotii, and Trichoderma harzianum. In ground corn grain silage (I) presence of the yeasts was dominant (90.000/g). In combined trials (II-IV) only Penicillium (P. brevicompactum and P. echinulatum) mold species were found. Presence of molds and yeasts in investigated trials was within tolerated values for ensiled feedstuffs. Mycotoxin presence in silage was not determined.


2021 ◽  
Author(s):  
Maghsoud Besharati ◽  
Valiollah Palangi ◽  
Zabihollah Nemati ◽  
Rashid Safari ◽  
Abdelfattah Z. M. Salem

Abstract The purpose of this study was to investigate the effect of adding various levels of waste sour lemon pomace to lucerne on the properties and ruminal gas production of silage. Levels of 0 (Control), 25 (L1), 50 (L2), 75 (L3), and 100 (L4) % lemon pomace were replaced by lucerne for silage preparation and silenced for 60 days. The experiment was conducted in a completely randomized design with three replications (3 silos per treatment). After opening the silos, pH and dry matter were measured immediately, and the dried samples were kept at -20 until further tests. The silage pH decreased with the addition of lemon pomace compared to the control (p < 0.05). Total silage volatile fatty acids and dry matter content increased with adding lemon pomace. The results of gas production also showed that lemon pomace increased the in vitro gas production volume. Adding lemon pomace to lucerne silage due to the high pectin content in these agricultural wastes caused a rapid decrease of silage pH and an acidic environment. It prevented the growth of non-beneficial bacterial species. The obtained data showed that waste sour lemon has a good potential to use as a livestock feedstuff that can be useful in reducing the cost of ruminant production and preventing environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document