Nonlinear Dynamics of a Taut String with Material Nonlinearities

2000 ◽  
Vol 123 (1) ◽  
pp. 53-60 ◽  
Author(s):  
M. J. Leamy ◽  
O. Gottlieb

A spatial string model incorporating a nonlinear (and nonconservative) material law is proposed using finite deformation continuum mechanics. The resulting model is shown to reduce to the classical nonlinear string when a linear material law is used. The influence of material nonlinearities on the string’s dynamic response to excitation near a transverse natural frequency is shown to be small due to their appearance at high orders only. Material nonlinearities appear at low order in the equations for excitation near a longitudinal natural frequency, and a solution for this case is developed by applying a second order multiple scales method directly to the partial differential equations. The material nonlinearities are found to influence both the degree of nonlinearity in the response and its softening or hardening nature.

Author(s):  
Michael J. Leamy ◽  
Oded Gottlieb

Abstract A spatial string model incorporating a nonlinear (and non-conservative) material law is proposed using finite deformation continuum mechanics. The influence of material nonlinearities on the string’s dynamic response to excitation near a transverse natural frequency is shown to be small due to their appearance at high orders only. Material nonlinearities appear at low order in the equations for excitation near a longitudinal natural frequency and a solution for this case is developed by applying the method of multiple scales directly to the partial differential equations. An example string is considered to explore the influence of material nonlinearities on the dynamic response. Rich modal content is found, which can not be predicted by simpler models. Additionally, the material nonlinearities are shown to exert their greatest, influence away from resonance, where they serve to limit the response amplitudes.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Yasser Salah Hamed ◽  
Ali Kandil

Time delay is an obstacle in the way of actively controlling non-linear vibrations. In this paper, a rotating blade’s non-linear oscillations are reduced via a time-delayed non-linear saturation controller (NSC). This controller is excited by a positive displacement signal measured from the sensors on the blade, and its output is the suitable control force applied onto the actuators on the blade driving it to the desired minimum vibratory level. Based on the saturation phenomenon, the blade vibrations can be saturated at a specific level while the rest of the energy is transferred to the controller. This can be done by adjusting the controller natural frequency to be one half of the blade natural frequency. The whole behavior is governed by a system of first-order differential equations gained by the method of multiple scales. Different responses are included to show the influences of time delay on the closed-loop control process. Also, a good agreement can be noticed between the analytical curves and the numerically simulated ones.


2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


Author(s):  
S. Nima Mahmoodi ◽  
Nader Jalili

The nonlinear vibrations of a piezoelectrically-driven microcantilever beam are experimentally and theoretically investigated. A part of the microcantilever beam surface is covered by a piezoelectric layer, which acts as an actuator. Practically, the first resonance of the beam is of interest, and hence, the microcantilever beam is modeled to obtain the natural frequency theoretically. The bending vibrations of the beam are studied considering the inextensibility condition and the coupling between electrical and mechanical properties in piezoelectric materials. The nonlinear term appears in the form of quadratic due to presence of piezoelectric layer, and cubic form due to geometry of the beam (mainly due to the beam's inextensibility). Galerkin approximation is utilized to discretize the equations of motion. The obtained equation is simulated to find the natural frequency of the system. In addition, method of multiple scales is applied to the equations of motion to arrive at the closed-form solution for natural frequency of the system. The experimental results verify the theoretical findings very closely. It is, therefore, concluded that the nonlinear approach could provide better dynamic representation of the microcantilever than previous linear models.


Author(s):  
Robert L. Lowe ◽  
Christopher G. Cooley

Abstract This paper investigates the nonlinear dynamics of square dielectric elastomer membranes under time-dependent, through-thickness compressive loading. The dielectric elastomer is modeled as an isotropic ideal dielectric, with mechanical stiffening at large strains captured using the Gent hyperelastic constitutive model. The equation of motion for the in-plane membrane stretch is derived using Hamilton’s principle. The static response of the membrane is first investigated, with equilibrium stretches calculated numerically for a wide range of compressive pre-loads and applied voltages. Snap-through instabilities are observed, with the critical snap-through voltage decreasing with increasing compressive pre-load. The dynamic response of the membrane is then investigated under forced harmonic excitation. Frequency response plots characterizing the steady-state vibration reveal primary, subharmonic, and superharmonic resonances. Near these resonances, two stable vibration states are possible, corresponding to upper and lower branches in the frequency response. Significant and practically meaningful differences in the dynamic response are observed when the system vibrates at a fixed frequency about the upper and lower branches, a feature not discussed in previous research.


2014 ◽  
Vol 538 ◽  
pp. 79-82
Author(s):  
Zhi Dong Huang ◽  
Yun Pu Du ◽  
Han Xiao Li ◽  
Xiu Li Sun ◽  
Yu Wang

The characteristics of oval gear is analyzed. The parameters of oval gear are chosen and calculated. The three-dimensional solid modeling of oval gear is achieved. The dynamic model of oval gear is established by FEM and modal analysis of oval gear is investigated. The natural frequency and major modes of the first six orders are clarified. The method and the result facilitate the dynamic design and dynamic response analysis of oval gear.


Author(s):  
Cheng-Kuo Sung ◽  
Paul C. P. Chao ◽  
Ben-Cheng Yo

This study is devoted to explore the effect of nonlinear dynamics of damping washers on the dynamic performance of automatic ball balancer (ABB) system installed in optical disc drives. The ABB is generally used on rotational system to reduce vibration. Researches have been conducted to study the performance of the ABB by investigating the nonlinear dynamics of the system; however, the model adopted often consider the damping washer in a typical ABB suspension system as a linear one, which does not reflect the fact that the practical washers are inevitably exhibit nontrivial nonlinear dynamics at some range of operation, deviating the ABB performance away from the expecteds. In this study, a complete dynamic model of the ABB including a detailed nonlinear model of the damping washers based on experimental data for practical wahers is established. The method of multiple scales is then applied to formulate a scaled model to find all possible steady-state ball positions and analyze stabilities. It is found that with reasonable level of nonlinearity, the balancing balls of the ABB are still reside at the desired positions at steady state, rendering expected vibration reduction; however, jump phenomena also occurs as the spindle operated through natural frequency of the suspension, causing unwanted system vibrations. Numerical simulations and experiments are conducted to verify the theoretical findings. The obtained results are used to predict the level of residual vibration, with which the guidelines on choices of the nonlinear damping washers are distilled to achieve desired performance.


Author(s):  
Dumitru I. Caruntu ◽  
Israel Martinez

The nonlinear response of an electrostatically actuated cantilever beam microresonator is investigated. The AC voltage is of frequency near resonator’s natural frequency. A first order fringe correction of the electrostatic force and viscous damping are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for the uniform microresonator are compared with those obtained via the Method of Multiple Scales (MMS).


Author(s):  
Zhenfang Xin ◽  
S. A. Neild ◽  
D. J. Wagg

The normal form technique is an established method for analysing weakly nonlinear vibrating systems. It involves applying a simplifying nonlinear transform to the first-order representation of the equations of motion. In this paper we consider the normal form technique applied to a forced nonlinear system with the equations of motion expressed in second-order form. Specifically we consider the selection of the linearised natural frequencies on the accuracy of the normal form prediction of sub- and superharmonic responses. Using the second-order formulation offers specific advantages in terms of modeling lightly damped nonlinear dynamic response. In the second-order version of the normal form, one of the approximations made during the process is to assume that the linear natural frequency for each mode may be replaced with the response frequencies. Here we will show that this step, far from reducing the accuracy of the technique, does not affect the accuracy of the predicted response at the forcing frequency and actually improves the predictions of sub and superharmonic responses. To gain insight into why this is the case, we consider the Duffing oscillator. The results show that the second-order approach gives an intuitive model of the nonlinear dynamic response which can be applied to engineering applications with weakly nonlinear characteristics.


Sign in / Sign up

Export Citation Format

Share Document