Approximating EHL Film Thickness Profiles Under Transient Conditions

2002 ◽  
Vol 124 (3) ◽  
pp. 443-447 ◽  
Author(s):  
S. Messe´ ◽  
A. A. Lubrecht

In ElastoHydrodynamic Lubrication (EHL), transient processes are much more common than stationary ones. Predicting the film thickness under steady state conditions has become straight forward. Using numerical methods, the effect of transient conditions on the film thickness profile can be computed. However, those analyses are very time consuming even using advanced numerical techniques. As such, they are inadequate for industrial applications as design and development. This paper shows that under certain assumptions, an approximate formula of the transient film thickness profile can be derived under transient operating conditions. The variations can occur in the geometry, the load or the hydrodynamic velocity. The theory can handle all variations separately, or even a combination of several parameters varying simultaneously. The analytical approximation obtained is rather good apart from the constriction at the contact edge(s). This approach can be applied to any set of time dependent conditions (load, speed, geometry). As an example an EHL contact is studied in which reversal of the entrainment velocity occurs.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


Author(s):  
A. D. Chapkov ◽  
C. H. Venner ◽  
A. A. Lubrecht

The influence of surface roughness on the performance of bearings and gears operating under ElastoHydrodynamic Lubrication (EHL) conditions has become increasingly important over the last decade, as the average film thickness decreased due to various influences. Surface features can reduce the minimum film thickness and thus increase the wear. They can also increase the temperature and the pressure fluctuations, which directly affects the component life. In order to describe the roughness geometry inside an EHL contact, the amplitude reduction of harmonic waviness has been studied over the last ten years. This theory currently allows a quantitative prediction of the waviness amplitude and includes the influence of wavelength and contact operating conditions. However, the model assumes a Newtonian behaviour of the lubricant. The current paper makes a first contribution to the extension of the roughness amplitude reduction for EHL point contacts including non-Newtonian effects.


2017 ◽  
Vol 873 ◽  
pp. 303-307
Author(s):  
Feng Li ◽  
Feng Guo ◽  
Guan Gyuan Liu ◽  
Zhang Gang

Many machine components work within an elastohydrodynamic lubrication (EHL) regime. Unconfined space is widely used in EHL formulas for to evaluate film thickness, which is related to operating conditions and material properties. In classical theoretical EHL studies, film pressure matches the loading balance and the location of the lubricated components can be adjusted. In the present study, the lubrication performance is analyzed based on a confined space. A thrust ball bearing lubrication simulation system is designed and used to examine the relationship between velocity and film thickness. It was found that the central film thickness and minimum film thickness increased as entrainment velocity increased. Fluctuations in the film thickness curve were observed, which may have arisen from slight gap variations in the ball-plate contact area.


Author(s):  
C J Hooke

In many line contacts the operating conditions, such as load, entrainment velocity and contact radii, vary with time. Generally, the results from standard elastohydrodynamic lubrication theory, derived for constant conditions, can be used to obtain a quasi-steady prediction of film thickness that is sufficiently accurate for design purposes. An important exception to this is where the entrainment direction changes because, under those conditions, the quasi-steady approach predicts that there will be no clearance between the surfaces while in practice a residual film will persist. A previous paper showed that the minimum film thickness during entrainment reversal depends primarily on the rate of change of entrainment velocity. Limit expressions for the minimum clearance in the four regimes of lubrication were obtained. The present paper is part of a programme to develop a minimum film thickness chart for entrainment reversal and deals with the transition between the rigid-piezoviscous and the elastic-piezoviscous regimes.


Author(s):  
Liju Su ◽  
Ramesh K. Agarwal

Supersonic steam ejectors are widely used in many industrial applications, for example for refrigeration and desalination. The experimental evaluation of the flow field inside the ejector is relatively difficult and costly due to the occurrence of shock after the velocity of the steam reaches over the sonic level in the ejector. In this paper, numerical simulations are conducted to investigate the detailed flow field inside a supersonic steam (water vapor being the working fluid) ejector. The commercial computational fluid dynamics (CFD) flow solver ANSYS-Fluent and the mesh generation software ANSYS-ICEM are used to predict the steam performance during the mixing inside the ejector by employing two turbulence models, the k-ω SST and the k-ε realizable models. The computed results are validated against the experimental data. The effects of operating conditions on the efficiency of the ejector such as the primary fluid pressure and condenser pressure are studied to obtain a better understanding of the mixing process and entrainment. Velocity contours, pressure plots and shock region analyses provide a good understanding for optimization of the ejector performance, in particular how to increase the entrainment ratio.


Author(s):  
Duohuan Wu ◽  
Jing Wang ◽  
Peiran Yang ◽  
Ton Lubrecht

In this study, the effect of oil starvation on isothermal elastohydrodynamic lubrication of an impact motion is explored with the aid of numerical techniques. During the impact process, on comparison with the fully lubricated results, the pressure and film thickness are much lower and the entrapped film shape does not happen. The rebound is delayed by the oil starvation assumption. During the rebound process, a periphery entrapment is seen in the starved film thickness distribution. Under the starved condition, the maximum pressure gradient is higher. The central film thickness and minimum film thickness exhibit different variations compared with the results by fully flooded assumption.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Dong Zhu ◽  
Q. Jane Wang

Effect of roughness orientation on lubricant film thickness has been an important issue of surface design, attracting much attention since the 1970 s. A systematical study, however, is still needed for various contact types in an extended range of operating conditions, especially in mixed lubrication cases with film thickness to roughness ratio (λ ratio) smaller than 0.5. The present study employs a deterministic mixed elastohydrodynamic lubrication (EHL) model to investigate the performance of lubricating films in different types of contact geometry, including the line contact, circular contact, and elliptical contacts of various ellipticity ratios. The speed range for analyzed cases covers 11 orders of magnitude so that the entire transition from full-film and mixed EHL down to dry contact (corresponding λ ratio from about 3.5 down to 0.001 or so) is simulated. Three types of machined surfaces are used, representing transverse, longitudinal, and isotropic roughness, respectively. The line contact results are compared with those from the stochastic models by Patir and Cheng (“Effect of Surface Roughness Orientation on the Central Film Thickness in EHD Contacts,” Proc. 5th Leeds-Lyon Symp. on Tribol., 1978, pp. 15–21) and the influence of roughness orientation predicted by the deterministic model is found to be less significant than that by the stochastic models, although the basic trends are about the same when λ > 0.5. The orientation effect for circular or elliptical contact problems appears to be more complicated than that for line contacts due to the existence of significant lateral flows. In circular contacts, or elliptical contacts with the ellipticity ratio smaller than one, the longitudinal roughness may become more favorable than the isotropic and transverse. Overall, the orientation effect is significant in the mixed EHL regime where theλratio is roughly in the range from 0.05 to 1.0. It is relatively insignificant for both the full-film EHL (λ > 1.2 or so) and the boundary lubrication/dry contact (λ < 0.025 ∼ 0.05).


2000 ◽  
Vol 122 (4) ◽  
pp. 711-720 ◽  
Author(s):  
Young S. Kang ◽  
Farshid Sadeghi ◽  
Xiaolan Ai

A model was developed to study the effects of a rigid debris on elastohydrodynamic lubrication of rolling/sliding contacts. In order to achieve the objectives the time dependent Reynolds equation was modified to include the effects of an ellipsoidal shaped debris. The modified time dependent Reynolds and elasticity equations were simultaneously solved to determine the pressure and film thickness in EHL contacts. The debris force balance equation was solved to determine the debris velocity. The model was then used to obtain results for a variety of loads, speeds, and debris sizes. The results indicate that the debris has a significant effect on the pressure distribution and causes a dent on the rolling/sliding bounding surfaces. Depending on the size and location of the debris the pressure generated within the contact can be high enough to plastically deform the bounding surfaces. Debris smaller than the minimum film thickness do not enter the contact and only large and more spherical debris move toward the contact. [S0742-4787(11)00501-7]


1984 ◽  
Vol 106 (4) ◽  
pp. 492-498 ◽  
Author(s):  
Vilmos Simon

The full thermal elastohydrodynamic analysis of the lubrication of rider rings is presented. A numerical solution of the coupled Reynolds, elasticity, energy, and Laplace’s equations for the oil film thickness, pressure, and temperature and rider rings temperatures is obtained. The temperature variation across the oil film is included. The real rider ring geometry is treated. The effect of the operating conditions on the performance characteristics is discussed.


Author(s):  
C J Hooke

The elastohydrodynamic lubrication of point contacts is examined and results for the minimum film thickness are presented for a wide range of radius ratios and operating conditions. The results are compared with the predictions of the appropriate regime formulae. Although these formulae give a reasonable estimate of the contact's behaviour, the actual clearances are often substantially different, particularly close to the regime boundaries. Interpolation equations for seven values of radius ratio are given and these should be sufficient to allow the minimum clearance to be estimated for most isoviscous point contacts.


Sign in / Sign up

Export Citation Format

Share Document