Numerical Study of Rotating Stall in a Pump Vaned Diffuser

2002 ◽  
Vol 124 (2) ◽  
pp. 363-370 ◽  
Author(s):  
Takeshi Sano ◽  
Yoshiki Yoshida ◽  
Yoshinobu Tsujimoto ◽  
Yuki Nakamura ◽  
Tatsuhito Matsushima

This paper treats the flow instabilities in a vaned diffuser by using CFD. A commercial code with the standard κ-ε turbulence model was used for the present work. It was found that the flow instabilities in the vaned diffuser: i.e., rotating stall, alternate blade stall, and asymmetric stall, could be simulated by the present calculations. These instabilities were observed in a range with negative slope of the pressure performance curve of the diffuser. The rotating stall onset flow rate is larger for the case with larger clearance between the impeller and diffuser vanes.

Author(s):  
Masahiro Miyabe ◽  
Akinori Furukawa ◽  
Hideaki Maeda ◽  
Isamu Umeki

The relationship between pump characteristic instabilities and internal flow was investigated in a mixed flow pump with specific speed of 700 (min−1 m3/min, m) or 1.72 (non-dimensional) by using a commercial CFD code and a dynamic PIV (DPIV) measurement. This pump has two positive slopes of a head-flow characteristic at the flow rates of about 60%Qopt and 82%Qopt. In the authors’ previous study, it was clarified that the characteristic instability at 82%Qopt is caused by the diffuser rotating stall (DRS) and the backflow near the hub of the vaned diffuser plays an important role on the onset of the diffuser rotating stall. In the present paper, the investigation is focused on the instability at about 60% Qopt. Based on both of experimental and numerical results, it was clarified that the characteristic instability at 60%Qopt is caused by the backflow at the inlet of the impeller tip and the leakage flow from the impeller pressure surface to the suction surface plays an important role on the onset of the backflow. The behaviors of backflow at the impeller inlet were visualized by the DPIV measurements and CFD simulation. Moreover, internal flow was investigated in detail and the occurrence of characteristic instability is assumed as follows: At the partial flow rate, the flow angle at the inlet of the impeller tip decreases and the flow hits the impeller pressure surface. Then, the blade loading at the inlet of impeller tip is increased and the recirculation at the leading edge and the leakage flow rate from pressure surface to suction surface increases. The leakage flow causes to generate vortices at the inlet of the suction surface of the impeller. As the flow rate is further decreased, the vortices develop to backflow with swirl. The leakage flow has peripheral component of absolute velocity and the swirling energy is continuously supplied by the backflow. Therefore, even the passage flow at the inlet of the impeller has been getting pre-swirling. The theoretical head, the Euler head is decreased due to the pre-swirling. Moreover, based on the CFD results, the pre-swirling and unsteady vortices near the suction surface of the impeller causes pump characteristic instability. When the flow rate is decreased further more, total head rises because the flow pattern in the impeller changes to centrifugal type due to the backflow from the vaned diffuser at the hub region.


Author(s):  
Beat Ribi ◽  
Georg Gyarmathy

The present paper concerns the transition from mild to deep surge in a single stage centrifugal compressor using a vaned diffuser. Time-resolved measurements of the mass flow rate and the static pressures at various locations of the compressor were analyzed for different diffuser geometries and different operating points in the compressor map. When the throttle valve was gradually closed at an impeller tip Mach number (Mu) above 0.4, the compressor showed first mild and then deep surge whereas at Mu=0.4 rotating stall was the dominant instability. This single-cell rotating stall was identified to be caused by the impeller. During mild surge at higher Mach numbers the instantaneous flow and pressure traces showed that the overall flow at the stage inlet intermittently dropped below the critical value associated with the occurence of impeller rotating stall. Rotating stall appeared for a while but vanished as soon as the flow increased again. With further throttling, however, a threshold was reached at which rotating stall triggered deep surge. The results show that triggering only occurred if the flow deficiency causing rotating stall persisted long enough to permit the stall cell to make at least one or two revolutions.


2008 ◽  
Author(s):  
Mikhail P. Strongin

The oscillations of pump performance parameters like head and power corresponding to a wide range of flow-rate values are investigated in the present paper. A centrifugal double suction industrial pump is studied with comparison of test, steady state and averaged transient results. Different turbulence closure models, such as k-ω, and k-ω SST were used. The oscillation behavior of the head and the power of pump is studied for three different pump geometries. The pump model consists of suction, impeller and discharge parts which are meshed and calculated together. This, for instance, naturally permits the effects of non uniformity of velocity distribution on the impeller eye and on the inlet of the discharge segment to be taken into account. The commercial code Fluent 6.3.26 is used for the CFD computations. The results show much better agreement of the test data with averaged transient calculations compared with steady state calculations, especially far away from best efficiency point on the performance curve. Besides, an interesting transient effect, doubling of the frequency of pump parameters oscillations (compared with the blade passing frequency w = n*N) is observed.


Author(s):  
Kazuhiro Tsukamoto ◽  
Chisachi Kato

Abstract This work investigates the unsteady fluctuation of inducer recirculation stemming from the diffuser stall that occurs near the surge condition. Experiments and unsteady numerical simulation were utilized for the investigation. Inducer recirculation is known to occur near the surge occurrence flow rate, where the flow rate has a positive slope of the performance curve and the recirculation extends to the upstream of the impeller inlet when decreasing the flow rate more. However, few papers have investigated the unsteady phenomenon of the recirculation, even though the surge is what causes it. Clarifying the recirculation phenomenon is essential in terms of expanding the operation range to the lower flow rate for centrifugal turbomachinery. This was our motivation for investigating the unsteady oscillation phenomenon of the inducer recirculation. We investigated a single-stage centrifugal blower with the maximum pressure rise ratio of 1.2 and focused on the flow rates near surge occurrence. The blower was equipped with an open type centrifugal impeller, a vane-less diffuser, and a scroll casing. The blower performance and pressure time-history data were obtained by experiments. Unsteady simulations using large eddy simulation (LES) were conducted to investigate the flow field in the blower for each flow rate. The obtained performance curve showed that the positive slope of the pressure rise at the lower flow rate was due to the impeller stall and that the inducer recirculation extending upstream of the suction pipe near the slope of the curve was flat. LES analysis revealed that this inducer recirculation had two typical fluctuation peaks, one at 20% of the rotation frequency and the other at 95%. We also found that the stall cell at the impeller inlet propagated in the circumferential direction and swirled at almost the same frequency as the impeller rotation. In addition, the fluctuation at the diffuser derived from the diffuser rotating stall propagated to the suction pipe.


Author(s):  
Yang Zhao ◽  
Guang Xi ◽  
Jiayi Zhao

The operating range of a centrifugal compressor is often limited by the occurrence of the flow instability, such as diffuser rotating stall or system surge. In the paper, the unsteady numerical simulations are performed on a low-speed centrifugal compressor to investigate the characteristic of the rotating stall in the vaned diffuser. And also, the developed model of lumped parameter is used to predict the system instability. The flow field in the diffuser is firstly investigated at near stall condition. It is found that the leading-edge vortex and the secondary flow induce the hub-corner separation at the suction side of the diffuser blade. When the mass flow rate is reduced gradually, the fore part of the volute turns to act as a diffuser from a nozzle. Under the influence of the asymmetry induced by the volute, the hub-corner separation firstly develops into rotating stall in the passage with the lowest mass flow rate when at critical stall point. And then the diffuser rotating stall propagates along the circumferential direction at about 7% of the impeller speed. And also, the model of lumped parameter considering the effect of rotating stall is developed to analyze the system instability of mild surge. The predicted vibration frequency is within 5.8% of the measurement and the predicted transient process in mild surge matches well with the measurement. With different volume of the compressed air, the transient compressor characteristic tends to be stabilized or oscillates in a cycle along the counter-clockwise with different magnitude.


Author(s):  
Masahiro Miyabe ◽  
Akinori Furukawa ◽  
Hideaki Maeda ◽  
Isamu Umeki

The relationship between pump characteristic instability and internal flow was investigated on a mixed flow pump with specific speed ωs = 1.72 (dimensionless) or 700 (m3/min, m, min−1) by using a commercial CFD code and a dynamic PIV (DPIV) measurement. As a result, it was clarified that the diffuser rotating stalls causes the positive slope of a head-flow characteristic and the backflow at hub-side of the vaned diffuser plays an important role on the onset of the diffuser rotating stall. The complex behaviors of diffuser rotating stall were visualized by the DPIV measurements and CFD simulation. Moreover, the internal flow was investigated in detail and the inception of characteristic instability was presumed as follows: At the partial flow rate, low energy fluids are accumulated in the corner between the hub surface and the suction surface of the diffuser vane. As the flow rate is further decreased, the low energy fluids region at the corner axi-symmetrically expands along the hub and become unstable due to adverse pressure gradient. Then, strong backflow occurs and impinges against passage flow from the impeller at the inlet of the vaned diffuser. In addition, the backflow blocks the passage flow from impeller and the inlet flow angle at the leading edge of adjacent diffuser vane is reduced. Therefore, flow separation occurs near the inlet of suction surface of the vaned diffuser, and a strong vortex is generated there. After that, the vortex develops and becomes a stall core. Based on above considerations, pump design parameter studies were numerically carried out and diffuser rotating stall was suppressed and pump characteristic instability was controlled by enlarging the inlet diameter of diffuser hub.


2019 ◽  
Vol 9 (12) ◽  
pp. 2536
Author(s):  
Dae Yun Kim ◽  
Chan Ho Jeong ◽  
Beom Jin Park ◽  
Min Suk Ki ◽  
Myung-Soo Shin ◽  
...  

This study investigates numerically gaseous CO2 leakage characteristics inside the containers of a transport ship and examines thermal effects on the structural damage that might happen in the containers. First, with consideration of the phase change, the ejected mass flow rate was estimated using the commercial code of DNV PHAST. Based on this estimated mass flow rate, we introduced an effective area model for accounting for the fast evaporation of liquefied CO2 occurring in the vicinity of a crack hole. Using this leakage modeling, along with a concept of the effective area, the computational fluid dynamics (CFD) simulations for analyzing transient three-dimensional characteristics of gas propagation in a confined space with nine containers, as well as the thermal effect on the walls on which the leaking gas impinges, were conducted. The commercial code, ANSYS FLUENT V. 17.0, was used for all CFD simulations. It was found that there are substantial changes in the pressure and temperature of the gas mixture for different crack sizes. The CO2 concentration at human nasal height, a measure of clear height for safety, was also estimated to be higher than the safety threshold of 10% within 200 s. Moreover, very cold gas created by the evaporation of liquefied CO2 can cool the cargo walls rapidly, which might cause thermal damage.


2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
S. Ljevar ◽  
H. C. de Lange ◽  
A. A. van Steenhoven

We report a numerical study on the vaneless diffuser core flow instability in centrifugal compressors. The analysis is performed for the purpose of better understanding of the rotating stall flow mechanism in radial vaneless diffusers. Since the analysis is restricted to the two-dimensional core flow, the effect of the wall boundary layers is neglected. A commercial code with the standard incompressible viscous flow solver is applied to model the vaneless diffuser core flow in the plane parallel to the diffuser walls. At the diffuser inlet, rotating jet-wake velocity pattern is prescribed and at the diffuser outlet constant static pressure is assumed. Under these circumstances, two-dimensional rotating flow instability similar to rotating stall is found to exist. Performed parameter analysis reveals that this instability is strongly influenced by the diffuser geometry and the inlet and outlet flow conditions.


2021 ◽  
Vol 11 (8) ◽  
pp. 3404
Author(s):  
Majid Hejazian ◽  
Eugeniu Balaur ◽  
Brian Abbey

Microfluidic devices which integrate both rapid mixing and liquid jetting for sample delivery are an emerging solution for studying molecular dynamics via X-ray diffraction. Here we use finite element modelling to investigate the efficiency and time-resolution achievable using microfluidic mixers within the parameter range required for producing stable liquid jets. Three-dimensional simulations, validated by experimental data, are used to determine the velocity and concentration distribution within these devices. The results show that by adopting a serpentine geometry, it is possible to induce chaotic mixing, which effectively reduces the time required to achieve a homogeneous mixture for sample delivery. Further, we investigate the effect of flow rate and the mixer microchannel size on the mixing efficiency and minimum time required for complete mixing of the two solutions whilst maintaining a stable jet. In general, we find that the smaller the cross-sectional area of the mixer microchannel, the shorter the time needed to achieve homogeneous mixing for a given flow rate. The results of these simulations will form the basis for optimised designs enabling the study of molecular dynamics occurring on millisecond timescales using integrated mix-and-inject microfluidic devices.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


Sign in / Sign up

Export Citation Format

Share Document