scholarly journals Making a Clean Getaway

2002 ◽  
Vol 124 (01) ◽  
pp. 37-41
Author(s):  
Paul Sharke

This article reviews the battery-powered electric vehicles that are forming a symbiotic relationship with commuter rail. Priced at around $6000, the electric vehicles make little sense for someone who has to get somewhere, when a full-fledged automobile can be had for twice that without any inherent restrictions on use, safety, and range. Perhaps retirees, with eyesight failing and reactions slowing, might be safer in such severely throttled cars. Think City drivers will have to bring their cars to the dealer about every 3,000 miles to have the equivalent of an oil change performed on the battery. The car’s nicad batteries are unsealed, unlike those powering calculators and electric drills, and so they need periodic watering. The average commuter probably is not ready to trade in the well-worn station car for a fancy golf cart, but the little electric cars may just warrant a second look from at least some of the great mass of bleary-eyed riders.

2021 ◽  
Vol 2129 (1) ◽  
pp. 012011
Author(s):  
V.K Bupesh Raja ◽  
Ignatius Raja ◽  
Rahul Kavvampally

Abstract The Automotive Industry has undergone a huge revolution – Electric Vehicles! Electric cars are growing fast and the demand for them is increasing all around the world, thanks to the more and improved choice, reduced prices, and enhancing battery technology. Introduced more than 100 years ago, electric vehicles have gone through a tremendous amount of advancement. This paper reviews the current major challenges faced by the Electric Vehicle Industry along with possible solutions to overcome them. Although electric vehicles have come a long way, the battery used in the vehicles needs to be further explored to harness maximum energy with a compact design. Electric vehicles should soon be able to compete with combustion engine vehicles in every aspect. Also, this paper reviews alternative materials for electrodes and batteries to make charging faster and reliable than ever. This paper envisages few concepts that could revolutionize Automobile Industry further in the future.


2021 ◽  
Vol 17 (5) ◽  
pp. 913-939
Author(s):  
Tat'yana S. REMIZOVA ◽  
Dmitrii B. KOSHELEV

Subject. The article reviews various transport electrification scenarios, which would help reduce the CO2 emissions and environmental threats. The environmental and economic security can also be affected if the State insufficiently understands the importance of electric vehicle development, their popularization. It is also crucial to encourage the consumption, develop the infrastructure, innovative projects, which reshape the power engineering structure. Objectives. We determine how global trends influence the production and integration of electric vehicles in Russia. We also evaluate the environmental and cost effectiveness of morot vehicle electrification, opportunities and trajectories for the electric vehicle development nationwide. Methods. The study involves methods used to summarize regulatory, empirical and theoretical data, and general and partial scientific methods and techniques, such as abstraction, analysis, analogy, etc. Results. The article shows the extent of electric transport development worldwide, and focuses on environmental issues and opportunities to reduce the carbon footprint by using electric vehicles and renewable energy sources. We point out opportunities, threats, prospects and disadvantages of the electric vehicle use in Russia. The article indicates how the use of electric cars can be developed in Russia, considering changes in the production structure and the generation of positive effects as much as possible. Conclusions. Currently, Russia evidently lags behind the global production and use of electric cars, without having a priority of the carbon footprint reduction. The strategy for the car segment advancement is underdeveloped. Suggested herein, the ideas for the electric car segment development are aimed to encourage the consumption, production, advancement of infrastructure and innovative projects, and ensure the environmental security of the country.


Batteries ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 65 ◽  
Author(s):  
Dmitry Pelegov ◽  
José Pontes

The growing popularity of electric vehicles is one of the main drivers of battery industry transformation. Words like “transport system decarbonization”, “electromobility”, and “environmental-friendly society” are very popular today, but questions remain as to how to measure electric vehicles’ adoption progress and how this transition changes the battery industry. This perspective paper provides a review of the electric cars and buses market, estimates the production volumes of some other electric vehicle types, and discusses the role of traction batteries in the global battery market. A simple estimation of the sales rate allows us to evaluate the prospects of electric vehicle adoption in leading countries. Finally, the application of the main battery chemistries is reviewed and topical issues to the research society are addressed and formulated.


Author(s):  
María Carmen Pardo-Ferreira ◽  
Juan Antonio Torrecilla-García ◽  
Carlos de las Heras-Rosas ◽  
Juan Carlos Rubio-Romero

Sales of electric and hybrid electric vehicles are increasing steadily worldwide, and consequently their presence increases in city areas. At low speeds, the low levels of noise produced by these vehicles could become a new risk factor for road users. However, the magnitude of the risk has not been accurately determined. In addition, its inclusion in the work environment could pose a new risk that should be managed. Thus, in relation to low noise levels of electric and hybrid vehicles, this study aimed to characterise the risk situations and determine the risk perception of workers as pedestrians and internal combustion engine vehicle drivers coming into contact with these vehicles. The data were extracted from 417 questionnaires filled out by the employees of public service companies who come into contact with electric and hybrid vehicles during their working day in the city of Málaga, in the region of Andalusia, Spain. According to the experiences reported, it seems that the risk due to the low noise levels of electric vehicles is moderate and does not reach alarming levels. These risk situations usually occurred in low speed urban areas, particularly when crossing the road, or in semi-pedestrian areas. Almost half the respondents considered that the electric vehicle poses a risk to other road users because it is more difficult to hear, and they believe it likely that other road users could be injured. Despite that risk, pedestrians did not change their way of walking or moving around the parking areas and other areas of the company. Electric and hybrid electric cars are now required to produce sound when travelling at low speeds. Nevertheless, the effectiveness of this measure should be assessed once implemented and future research should explore alternative non-acoustic measures.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4614 ◽  
Author(s):  
Katarzyna Turoń ◽  
Andrzej Kubik ◽  
Feng Chen

The article was dedicated to the topic of energy consumption of driving cars equipped with an electric motor. Due to the emerging demands for the excessive use of energy by vehicles (including car-sharing system vehicles), the authors carried out research to determine factors that affect the energy consumption. Due to the occurrence of a research gap related to the lack of reliable scientific information regarding real electricity consumption by vehicles used in car-sharing systems, the authors attempted to determine these values based on the proposed research experiment. The purpose of the research was to identify factors that increase energy consumption while driving in the case of car-sharing systems and developing recommendations for users of car-sharing systems and system operators in relation to energy consumption. Based on data received from car-sharing system operators and to their demands that users move cars uneconomically and use too much energy, the authors performed a scientific experiment based on Hartley’s plan. The authors made journeys with electric cars from car-sharing (measurements) in order to compare real consumption with data obtained from operators. As a result, the authors developed a list of factors that negatively affect the energy consumption of electric vehicles from car-sharing systems. As conclusion, a number of recommendations were developed for car-sharing system operators on how to manage their systems to reduce excessive energy consumption in electric vehicles.


Author(s):  
Yiqing Yuan ◽  
Guoqiang Wu ◽  
Xiangyan He ◽  
Yanda Song ◽  
Xuewen Zhang

Despite great progress recently made on applications of in-wheel motors in electric vehicles, almost all production or near-production electric vehicles still utilize mechanical speed reduction systems for transferring torque from the traction motor to wheels for the purposes of torque augmentation and speed reduction. These systems in general fall into three categories, i.e. fixed ratio, stepped variable ratio, or continuously variable ratio. In China, most electric cars retrofitted from internal combustion engine propelled vehicle models use gear reduction systems of a fixed speed ratio, in order to minimize the time to market. Typically a conversion is made to the original 5-speed manual transmission by taking out a few unused gear sets. With the rapid growth in electric vehicle industry, some gearboxes of fixed speed have been engineered and they typically have a layshaft configuration. Most of them still do not come with a “park” gear due to a lack of understanding on customer’s needs. As an exception, a transmission of fixed speed ratio dedicated for electric vehicle applications has been developed at the Electric Vehicle R&D Center, Chinese Academy of Sciences (UCAS). Among electric vehicles announced by domestic vehicle manufacturers in China, some employ 5-speed manual transmissions (MTs) or automatic transmission (ATs) that typically found in traditional vehicles. From the driving convenience, transmission efficiency, or cost standpoints, these transmissions are, in general, not appropriate for applications in electric vehicles. The “misusage” of these transmissions has often something to do with their availability rather than suitability. A great deal of effort has been put into the research and development of automated mechanical transmissions (AMTs) in China to date. Significant progress has been made to the reduction of shift time, improvement of shift quality, and optimization of the mechanical components. Continuously variable transmission (CVT) is considered to be an important trend in drivetrain technology. However, the pulley-belt types of CVT commonly seen in traditional vehicles are not proper for electric vehicle applications. An EVT dedicated for electric vehicles is under development at UCAS, in which the power from an electric motor of dual-rotors is coupled by means of a planetary gear set, allowing continuous variable of the output speed. In summary, the electric vehicle drivetrain technology in China is undergoing rapid advances, which will impact the development of electric vehicle industry at home and abroad.


2018 ◽  
Vol 9 (1) ◽  
pp. 82 ◽  
Author(s):  
Svetlana RATNER ◽  
Marina ZARETSKAYA

One of the most urgent problems of modern urban agglomerations is the optimization of the structure and technological maintenance of transport systems. As one of the options to solve this problem, the development of electric vehicles (EV) is usually suggested. But the scientific community has still not developed a clear understanding of whether electric vehicles are a better alternative to traditional cars, considering all environmental indicators. The aim of this work is to develop a method of forecasting the environmental effects of diffusion of EV technologies and test it on the example of the Krasnodar region of Russia as a region with the highest motorization ratios in the country, a complicated ecologic situation in large cities, a high population density and a modern structure for energy generation.  The technical progress in energy efficiency of each technology is taken into consideration. We use learning theory as a methodological framework, which is common for solution of problems of forecasting technological development. According to the calculations, the total emissions from private motor vehicles, with an increase in energy efficiency of vehicles with internal combustion engine and increase penetration of electric vehicles should decrease in 2025 by 15% comparing business-as-usual scenario, despite a significant increase in the level of motorization (almost 65%). Thus, a wide spread of EV technologies is preferable from an environmental point of view. The proposed approach to predict the environmental effects of diffusion of EV technologies allows us to estimate the reduction in emissions from road transport in any region while maintaining the direction and speed of the following key trends: the growth of energy efficiency and environmental performance of traditional cars with combustion engines, the growth of the level of motorization of the population in Russia, and reduction of EVs costs. Additional effects of stimulating (or de-stimulating) policies are not considered in this model.


2014 ◽  
Vol 672-674 ◽  
pp. 1165-1168
Author(s):  
Wei Liu ◽  
Tao Wei ◽  
Ming Xin Zhao ◽  
Dan Xu ◽  
Chao Gao

This paper forecast the electric load of the mass electric cars connected to the electric grid in charging and discharging; considered the inventory forecast of electric vehicles; comprehensive analyzed the charge and discharge characteristics of the electric cars’ charging infrastructures and the impact factors such as users’ behaviors as well as the using frequency, which lead to different load distribution at different times. It calculated the total load of electric vehicles into the load curve and the load curve of the characteristics under different regions (industrial, commercial and residential). Concludes that the mass electric cars connected to the electricity grid will increase the peak load of power grid, and lay the foundation for the subsequent market management and optimization control.


2014 ◽  
Vol 1030-1032 ◽  
pp. 2130-2134
Author(s):  
Xue Bo Yan

With the development and extension of electric vehicle in our country, research on electric vehicle technology becomes a hot topic in recent years. This paper starts with the technical barriers from electric vehicle endurance ability and described the improving methods of electric automobile thoroughly, pointed out the existing problems in the process of application about the methods in this paper. Then put forward the application of solar energy, wind energy technology in electric cars, proposed a research direction for the development of electric vehicle. At last, the paper proposed a research direction for the development of electric vehicle.


Sign in / Sign up

Export Citation Format

Share Document