Carbon Super-Springs

2010 ◽  
Vol 132 (03) ◽  
pp. 30-35
Author(s):  
Carol Livermore

This article highlights the advantages of carbon nanotubes (CNT) and their high potential in the mechanical engineering fields. It also demonstrates comparison between a CNT and normal spring use. Carbon nanotubes have the potential to store a thousand times more mechanical energy, pound for pound, than steel springs. Lab results point to a day when nanotube-powered bikes and lawn equipment could become practical. The test models have made it clear that from an energy storage standpoint, the ideal system would be composed of large numbers of long, small-diameter, single-walled CNTs arranged in well-ordered groupings and loaded in tension. The results point up the need for more work to be done to understand how interactions among carbon nanotubes can both enhance and limit the performance of CNT springs. Applications requiring long-term, low-leakage energy storage are good candidates for CNT-based elastic energy storage technology.

Soft Matter ◽  
2021 ◽  
Author(s):  
Shewli Pratihar ◽  
Aniket Patra ◽  
Abhishek Sasmal ◽  
Samar Kumar Medda ◽  
Shrabanee Sen

The present work highlights an attempt of fabricating a nanocomposite by addition of multi-walled carbon nanotubes (MWCNT) as third phase into flexible ZnO-Poly(vinylidene fluoride) (ZnO-PVDF) composites. MWCNT played very important...


1995 ◽  
Vol 198 (9) ◽  
pp. 1895-1907 ◽  
Author(s):  
E Tauber ◽  
J Camhi

The wind-evoked escape behavior of freely ranging crickets (Gryllus bimaculatus) was studied using high-speed video and film analysis. The escape response can be of three types: a turn, a jump or a turn + jump. Any of these can be followed by running. The turn is similar to that of the cockroach, in terms of the details of body and leg movements. A jump occurs only when the cricket has its back to the wind, either because the stimulus came approximately from behind or because the cricket had first turned away from the wind and then jumped. The jump, like that of locust, requires some form of energy storage and quick release to obtain the necessary power. Locusts use long-term co-activation of antagonistic leg motor neurons to produce mechanical energy storage. By contrast, crickets do not appear to co-activate antagonistic leg motor neurons. Possible alternative energy storage and release mechanisms are discussed.


2009 ◽  
Vol 20 (25) ◽  
pp. 255704 ◽  
Author(s):  
F A Hill ◽  
T F Havel ◽  
C Livermore

2019 ◽  
Vol 31 (9) ◽  
pp. 1970064
Author(s):  
Yunxiang Bai ◽  
Boyuan Shen ◽  
Shenli Zhang ◽  
Zhenxing Zhu ◽  
Silei Sun ◽  
...  

2011 ◽  
Vol 23 (30) ◽  
pp. 3387-3391 ◽  
Author(s):  
Rufan Zhang ◽  
Qian Wen ◽  
Weizhong Qian ◽  
Dang Sheng Su ◽  
Qiang Zhang ◽  
...  

1967 ◽  
Vol 06 (01) ◽  
pp. 8-14 ◽  
Author(s):  
M. F. Collen

The utilization of an automated multitest laboratory as a data acquisition center and of a computer for trie data processing and analysis permits large scale preventive medical research previously not feasible. Normal test values are easily generated for the particular population studied. Long-term epidemiological research on large numbers of persons becomes practical. It is our belief that the advent of automation and computers has introduced a new era of preventive medicine.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2020 ◽  
Vol 12 (12) ◽  
pp. 1915
Author(s):  
Joe K. Taylor ◽  
Henry E. Revercomb ◽  
Fred A. Best ◽  
David C. Tobin ◽  
P. Jonathan Gero

The Absolute Radiance Interferometer (ARI) is an infrared spectrometer designed to serve as an on-orbit radiometric reference with the ultra-high accuracy (better than 0.1 K 3‑σ or k = 3 brightness temperature at scene brightness temperature) needed to optimize measurement of the long-term changes of Earth’s atmosphere and surface. If flown in an orbit that frequently crosses sun-synchronous orbits, ARI could be used to inter-calibrate the international fleet of infrared (IR) hyperspectral sounders to similar measurement accuracy, thereby establishing an observing system capable of achieving sampling biases on high-information-content spectral radiance products that are also < 0.1 K 3‑σ. It has been shown that such a climate observing system with <0.1 K 2‑σ overall accuracy would make it possible to realize times to detect subtle trends of temperature and water vapor distributions that closely match those of an ideal system, given the limit set by the natural variability of the atmosphere. This paper presents the ARI sensor's overall design, the new technologies developed to allow on-orbit verification and test of its accuracy, and the laboratory results that demonstrate its capability. In addition, we describe the techniques and uncertainty estimates for transferring ARI accuracy to operational sounders, providing economical global coverage. Societal challenges posed by climate change suggest that a Pathfinder ARI should be deployed as soon as possible.


Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2908
Author(s):  
Kazuo Umemura ◽  
Ryo Hamano ◽  
Hiroaki Komatsu ◽  
Takashi Ikuno ◽  
Eko Siswoyo

Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.


Sign in / Sign up

Export Citation Format

Share Document