The Impact of Adding Nitrogen Substitutes to Conventional Automotive Fuels

1999 ◽  
Vol 121 (3) ◽  
pp. 225-230
Author(s):  
S. Gouli ◽  
A. Serdari ◽  
S. Stournas ◽  
E. Lois

The adoption of oxygenates in gasoline was originally spurred by the oil crises of the 1970s. In more recent years, public awareness of the environmental issues constituted the main reason for the spreading of oxygenated compounds in the transportation fuels sector. This paper describes the effects of novel nitrogen compounds in gasoline and diesel fuel on ignition quality and on pollutant emissions. Our intention is to investigate the antiknock quality, as gaged by octane and cetane determinations, of organic chemical structures mostly derivable from biomass, in combination with their effectiveness in reducing exhaust emissions under various operating conditions.

2000 ◽  
Vol 123 (1) ◽  
pp. 39-43 ◽  
Author(s):  
S. Gouli ◽  
A. Serdari ◽  
S. Stournas ◽  
E. Lois

This paper describes some of the recent work carried out in our laboratory regarding the effects of novel nitrogen compounds in gasoline and diesel fuel on ignition quality and on pollutant emissions. Emphasis is given in studying chemical structures that can be derived from biomass (renewable raw materials). Our approach was to investigate chemical structures that can be derived from biomass, by studying the performance of possible gasoline and diesel extenders as gaged by ignition quality, and also by testing their effectiveness in reducing exhaust emissions under various operating conditions.


Author(s):  
Amin Akbari ◽  
Vincent McDonell ◽  
Scott Samuelsen

Co firing of natural gas with renewable fuels such as hydrogen can reduce greenhouse gas emissions, and meet other sustainability considerations. At the same time, adding hydrogen to natural gas alters combustion properties, such as burning speeds, heating values, flammability limits, and chemical characteristics. It is important to identify how combustion stability relates to fuel mixture composition in industrial gas turbines and burners and correlate such behavior to fuel properties or operating conditions. Ultimately, it is desired to predict and prevent operability issues when designing a fuel flexible gas turbine combustor. Fuel interchangeability is used to describe the ability of a substitute fuel composition to replace a baseline fuel without significantly altering performance and operation. Any substitute fuel, while maintaining the same heating load as the baseline fuel, must also provide stable combustion with low pollutant emissions. Interchangeability indices try to predict the impact of fuel composition on lean blowoff and flashback. Correlations for operability limits have been reported, though results are more consistent for blowoff compared to flashback. Yet, even for blowoff, some disagreement regarding fuel composition effects are evident. In the present work, promising correlations and parameters for lean blow off and flashback in a swirl stabilized lean premixed combustor are evaluated. Measurements are conducted for fuel compositions ranging from pure natural gas to pure hydrogen under different levels of preheat and air flow rates. The results are used to evaluate the ability of existing approaches to predict blowoff and flashback. The results show that, while a Damköhler number approach for blowoff is promising, important considerations are required in applying the method. For flashback, the quench constant parameter suggested for combustion induced vortex breakdown was applied and found to have limited success for predicting flashback in the present configuration.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
L. Mazzei ◽  
S. Puggelli ◽  
D. Bertini ◽  
A. Andreini ◽  
B. Facchini ◽  
...  

Lean burn combustion is increasing its popularity in the aeronautical framework due to its potential in reducing drastically pollutant emissions (NOx and soot in particular). Its implementation, however, involves significant issues related to the increased amount of air dedicated to the combustion process, demanding the redesign of injection and cooling systems. Also, the conditions at the combustor exit are a concern, as high turbulence, residual swirl, and the impossibility to adjust the temperature profile with dilution holes determine a harsher environment for nozzle guide vanes. This work describes the final stages of the design of an aeronautical effusion-cooled lean burn combustor. Full annular tests were carried out to measure temperature profiles and emissions (CO and NOx) at the combustor exit. Different operating conditions of the ICAO cycle were tested, considering Idle, Cruise, Approach, and Take-off. Scale-adaptive simulations with the flamelet generated manifold (FGM) combustion model were performed to extend the validation of the employed computational fluid dynamics (CFD) methodology and to reproduce the experimental data in terms of radial temperature distribution factor (RTDF)/overall temperature distribution factor (OTDF) profiles as well as emission indexes (EIs). The satisfactory agreement paved the way to an exploitation of the methodology to provide a deeper understanding of the flow physics within the combustion chamber, highlighting the impact of the different operating conditions on flame, spray evolution, and pollutant formation.


2021 ◽  
Vol 11 (13) ◽  
pp. 6035
Author(s):  
Luigi Teodosio ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Fabio Bozza ◽  
Gerardo Valentino

Combustion stability, engine efficiency and emissions in a multi-cylinder spark-ignition internal combustion engines can be improved through the advanced control and optimization of individual cylinder operation. In this work, experimental and numerical analyses were carried out on a twin-cylinder turbocharged port fuel injection (PFI) spark-ignition engine to evaluate the influence of cylinder-by-cylinder variation on performance and pollutant emissions. In a first stage, experimental tests are performed on the engine at different speed/load points and exhaust gas recirculation (EGR) rates, covering operating conditions typical of Worldwide harmonized Light-duty vehicles Test Cycle (WLTC). Measurements highlighted relevant differences in combustion evolution between cylinders, mainly due to non-uniform effective in-cylinder air/fuel ratio. Experimental data are utilized to validate a one-dimensional (1D) engine model, enhanced with user-defined sub-models of turbulence, combustion, heat transfer and noxious emissions. The model shows a satisfactory accuracy in reproducing the combustion evolution in each cylinder and the temperature of exhaust gases at turbine inlet. The pollutant species (HC, CO and NOx) predicted by the model show a good agreement with the ones measured at engine exhaust. Furthermore, the impact of cylinder-by-cylinder variation on gaseous emissions is also satisfactorily reproduced. The novel contribution of present work mainly consists in the extended numerical/experimental analysis on the effects of cylinder-by-cylinder variation on performance and emissions of spark-ignition engines. The proposed numerical methodology represents a valuable tool to support the engine design and calibration, with the aim to improve both performance and emissions.


Author(s):  
O. Liedtke ◽  
A. Schulz ◽  
S. Wittig

The present paper describes the emission performance of a newly designed liquid fuelled micro gas turbine combustor. In order to reduce pollutant emissions, in particular nitrogen oxides NOx, lean premixed pre-vaporized combustion is utilized. Both, combustor inlet pressure and temperature are very low due to the thermodynamic cycle conditions chosen. As a consequence, the heat available for fuel spray evaporation is not sufficient. The present combustor concept therefore uses fuel film evaporation on the hot inner surface of a premix tube. The heat for evaporating the liquid fuel film is provided by the outer counter flow of hot exhaust gases. To establish almost adiabatic conditions within the reaction zone the flame tube features a multi-layered design, consisting of ceramic rings forming the inner wall, an insulation compliant layer, and the outer metal casing. To demonstrate the potential for reducing pollutant emissions overall NOx and CO concentrations of the exhaust gases have been measured and analyzed. The impact of combustor loading parameter, equivalence ratio, staging of the combustion, and ratio between calculated reaction times and mean residence times on the formation of pollutant emissions is investigated in detail. Furthermore, the impact of the flame tube volume on pollutant emissions and combustion stability is considered at various operating conditions. Measured pollutant emissions indicate the great potential for pollutant reduction that is associated with the specific geometry of the combustor.


Author(s):  
L. Mazzei ◽  
S. Puggelli ◽  
D. Bertini ◽  
A. Andreini ◽  
B. Facchini ◽  
...  

Lean burn combustion is increasing its popularity in the aeronautical framework due to its potential in reducing drastically pollutant emissions (NOx and soot in particular). Its implementation however involves significant issues related to the increased amount of air dedicated to the combustion process, demanding the redesign of injection and cooling systems. Also the conditions at the combustor exit are a concern, as high turbulence, residual swirl and the impossibility to adjust the temperature profile with dilution holes determine a harsher environment for nozzle guide vanes. This work describes the final stages of the design of an aeronautical effusion-cooled lean burn combustor. Full annular tests were carried out to measure temperature profiles and emissions (CO and NOx) at the combustor exit. Different operating conditions of the ICAO cycle were tested, considering Idle, Cruise, Approach and Take-Off. Scale-adaptive simulations with the Flamelet Generated Manifold combustion model were performed to extend the validation of the employed CFD methodology and to reproduce the experimental data in terms of RTDF/OTDF profiles as well as emission indexes. The satisfactory agreement paved the way to an exploitation of the methodology to provide a deeper understanding of the flow physics within the combustion chamber, highlighting the impact of the different operating conditions on flame, spray evolution and pollutant formation.


2016 ◽  
Vol 27 (2) ◽  
pp. 335-352 ◽  
Author(s):  
Hui-Huang Tai ◽  
Dung-Ying Lin

Purpose – The expansion of the Panama Canal that is completed in 2016 provides container carriers with new opportunities to redeploy global oceangoing trunk routes. The purpose of this paper is to examine the cargo sources and geographical locations of three trunk routes, the departure points of which are all in East Asia. Design/methodology/approach – The operating conditions of various shipping practices were used to simulate trunk route deployment after canal expansion. Subsequently, a clean-line strategy featuring liquefied natural gas (LNG) as a replacement for heavy oil is proposed to explore the effects that container carriers have on energy savings and emission reductions. Findings – The results showed that the unit emissions of ships traveling trunk routes in East Coast North America and East Coast South America did not differ significantly regardless of whether the container carrier employed a conventional method or the new deployment plan following the expansion of the Panama Canal. By contrast, the adoption of a new method for sailing through the canal yields significant emission reductions for Far East/Europe routes. In addition, the slow-steam strategy adopted by carriers and the more costly clean-line strategy of LNG-fueled ships are both effective when applied to trunk routes. Originality/value – The results of this study provide a reference to container carriers deploying route structures and the International Maritime Organization when promoting emission-reduction policies.


Author(s):  
Enrico Corti

International emission tests (EPA, SFTP, MVEG-B, J-10.15, etc.) are carried out with vehicles running on the rolls dynamometer. Results, in terms of total emissions, are influenced by vehicles parameters such as mass, gear ratios, front surface, drag coefficient, etc. It would be useful, in the automobiles design phase, to have information about the impact of these parameters on total emissions. The obvious solution would be to build up a complete vehicle model to simulate performance and emission levels. Engine pollutants production modeling is the weak point, since it is difficult to obtain reliable results. Anyway it is possible to avoid pollutants production simulation, testing the actual engine under the same operating condition it would face inside the car’s hood. This paper describes a methodology whose aim is to test the engine on a standard test bench, simulating on-board operating conditions. An equivalence condition has to be satisfied in order to guarantee the methodology effectiveness: engine speed and Manifold Absolute Pressure (MAP) must always match for the two types of test performed on the same driving cycle. Engine speed and torque can be controlled through the bench actuators, their values depending on the simulated vehicle motion: once the car dynamics are simulated by means of a model, engine speed and torque corresponding to the given driving cycle can in fact be evaluated. The model is solved in real time, its output being the brake load torque value satisfying the equivalence condition. The brake controller, used as a slave, regulates the engine operating conditions consequently. The global model incorporates tires, aerodynamic forces, clutch, gearbox and driveline behaviors simulation: its response has been first validated comparing its outputs with data measured on board, and then it has been used to control an eddy current brake, for vehicle test simulation on the test bench. Two different control philosophies can be used: either a human driver or an automatic controller can ride the simulated car. The influence of vehicle parameters and gearshift mode on fuel consumption and pollutant emissions can be investigated.


2020 ◽  
Vol 12 (8) ◽  
pp. 3330
Author(s):  
Guido Marseglia ◽  
Blanca Fernandez Vasquez-Pena ◽  
Carlo Maria Medaglia ◽  
Ricardo Chacartegui

The Sustainable Development Goals 2030 Agenda of United Nations raises the need of clean and affordable energy. In the pathway for more efficient and environmentally friendly solutions, new alternative power technologies and energy sources are developed. Among these, the use of syngas fuels for electricity generation can be a viable alternative in areas with high biomass or coal availability. This paper presents the energy, environmental and economic analyses of a modern combined cycle plant with the aim to evaluate the potential for a combined power plant running with alternative fuels. The goal is to identify the optimal design in terms of operating conditions and its environmental impact. Two possible configurations are investigated in the power plant presented: with the possibility to export or not export steam. An economic analysis is proposed to assess the plant feasibility. The effect of the different components in its performance is assessed. The impact of using four different syngases as fuel is evaluated and compared with the natural gas fuelled power cycle. The results show that a better efficiency is obtained for the syngas 1 (up to 54%), in respect to the others. Concerning pollutant emissions, the syngas with a GHG impact and lower carbon dioxide (CO2) percentage is syngas 2.


2021 ◽  
Vol 60 (4) ◽  
pp. 57-69
Author(s):  
Katarzyna Bebkiewicz ◽  
Zdzisław Chłopek ◽  
Hubert Sar ◽  
Krystian Szczepański ◽  
Magdalena Zimakowska-Laskowska

The use of motor vehicles varies considerably under distinct traffic conditions: in cities, outside cities as well as on motorways and expressways. The impact of road traffic on the natural environment has been studied for many years, including in terms of the nature of the operation of motor vehicles. This problem is particularly important in highly urbanized areas, where traffic congestion is the source of increased emissions of harmful compounds contained in exhaust gases. For this reason, many cities have traffic restrictions, especially for those cars that do not meet the most stringent emission standards. Environmental protection is the driving force behind the development of modern combustion engine supply systems, which allow for proper control of the combustion of petroleum-derived fuels. The exhaust gas cleaning systems in the form of catalytic converters or particulate matter filters are also playing a very important role. Considerable differences in internal combustion engine operating states, both static and dynamic, result in important differences in pollutant emissions. Likewise, the national annual pollutant emission is affected by the share of distances travelled by vehicles under various traffic conditions. At the same time, it is very difficult to estimate exhaust emissions from road transport sources. Very interesting method of emission estimation is the application of the data included in the emission inventory which are a valuable source of information on exhaust emissions under various operating conditions. In the present study, the annual pollutant emissions were analyzed: at a national level (total pollutant emission) and in distinct traffic conditions. There were found large differences between individual pollutants’ shares in the emissions from vehicles under the tested traffic conditions. This is particularly evident for nitrogen oxides with the highest emission share outside cities, as opposed to other substances with the highest emission shares in cities, where traffic congestion is taking place.


Sign in / Sign up

Export Citation Format

Share Document