Response of Resin Transfer Molded (RTM) Composites Under Reversed Cyclic Loading

1996 ◽  
Vol 118 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Hassan Mahfuz ◽  
Anwar Haque ◽  
Daixu Yu ◽  
Shaik Jeelani

Compressive behavior and the tension-compression fatigue response of resin transfer molded IM7 PW/PR 500 composite laminate with a circular notch have been studied. Fatigue damage characteristics have been investigated through the changes in the laminate strength and stiffness by gradually incrementing the fatigue cycles at a preselected load level. Progressive damage in the surface of the laminate during fatigue has been investigated using cellulose replicas. Failure mechanisms during static and cyclic tests have been identified and presented in detail. Extensive debonding of filaments and complete fiber bundle fracture accompanied by delamination were found to be responsible for fatigue failures, while fiber buckling, partial fiber fracture and delamination were characterized as the failure modes during static tests. Weibull analysis of the static, cyclic and residual tests have been performed and described in detail. Fractured as well as untested specimens were C-scanned, and the progressive damage growth during fatigue is presented. Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) for the fractured specimen were also performed and the analysis of the failure behavior is presented.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nadim S. Hmeidat ◽  
Bailey Brown ◽  
Xiu Jia ◽  
Natasha Vermaak ◽  
Brett Compton

Purpose Mechanical anisotropy associated with material extrusion additive manufacturing (AM) complicates the design of complex structures. This study aims to focus on investigating the effects of design choices offered by material extrusion AM – namely, the choice of infill pattern – on the structural performance and optimality of a given optimized topology. Elucidation of these effects provides evidence that using design tools that incorporate anisotropic behavior is necessary for designing truly optimal structures for manufacturing via AM. Design/methodology/approach A benchmark topology optimization (TO) problem was solved for compliance minimization of a thick beam in three-point bending and the resulting geometry was printed using fused filament fabrication. The optimized geometry was printed using a variety of infill patterns and the strength, stiffness and failure behavior were analyzed and compared. The bending tests were accompanied by corresponding elastic finite element analyzes (FEA) in ABAQUS. The FEA used the material properties obtained during tensile and shear testing to define orthotropic composite plies and simulate individual printed layers in the physical specimens. Findings Experiments showed that stiffness varied by as much as 22% and failure load varied by as much as 426% between structures printed with different infill patterns. The observed failure modes were also highly dependent on infill patterns with failure propagating along with printed interfaces for all infill patterns that were consistent between layers. Elastic FEA using orthotropic composite plies was found to accurately predict the stiffness of printed structures, but a simple maximum stress failure criterion was not sufficient to predict strength. Despite this, FE stress contours proved beneficial in identifying the locations of failure in printed structures. Originality/value This study quantifies the effects of infill patterns in printed structures using a classic TO geometry. The results presented to establish a benchmark that can be used to guide the development of emerging manufacturing-oriented TO protocols that incorporate directionally-dependent, process-specific material properties.


Holzforschung ◽  
2012 ◽  
Vol 66 (7) ◽  
pp. 863-869 ◽  
Author(s):  
Ling Li ◽  
Meng Gong ◽  
Ian Smith ◽  
Dagang Li

Abstract Exploration of damage accumulation and reliable prediction of the fatigue lives of laterally loaded, nailed timber joints, are important to proper engineering design of wood structural systems subjected to earthquakes, cyclones/hurricanes or other loads causing fluctuating force flows in such joints. Failure of nailed timber joints typically involves the combination of yielding at plastic hinges in nail and/or the crushing of wood under nails. Force-based criteria can predict the static strength of such joints but cannot reliably predict fatigue behaviour because that depends on loading history and the dissipation of energy within plastic nail hinges and/or crushed wood. In this study, the failure modes, damage accumulation and fatigue life of nailed timber joints subjected to reversed cyclic loads under load-control condition were studied. The results showed that there are two failure modes of nailed timber joints, i.e., ductile failure of nails when the applied load level was higher than 85% of the static maximum load to failure (Pmax) and brittle failure when the applied load level was <85% of Pmax. The damage accumulation involved three phases, i.e., damage initiation, damage propagation and failure. Fatigue life of nailed joints under reversed cyclic loads was modelled by an energy criterion that separated dissipated energy into non-damaging and damaging components demarcated by the fatigue limit. This approach replicated the behaviour of nailed joints tested at 20 load levels of fully reversed repetitive cyclic loading.


2020 ◽  
pp. 002199832096218
Author(s):  
Han-fei Yin ◽  
Wei Zhou ◽  
Peng-fei Zhang ◽  
Lian-Hua Ma

Two kinds of carbon aramid/epoxy hybrid woven composite specimens with different fiber orientations were prepared. The progressive flexural damage behaviors of the composites were studied. The failure process was monitored in real time by acoustic emission during the test, and the characteristics of the acoustic emission signals originating from the damage were deeply studied. In addition, the internal damage initiation/evolution and failure mechanisms were characterized by X-ray micro-computed tomography. The results show that composite specimens exhibit higher strength and obvious quasi-brittle damage behavior when carbon fiber orients along the loading direction, and the macroscopic failure is mainly shear fracture, which propagates in the direction of thickness, and the damage is dominantly distributed above the neutral plane of specimen. When aramid fiber orients along the loading direction, composite specimens show high ductility and the failure modes are mainly ply fracture at the bottom, delamination (inter-ply delamination and intra-ply delamination) and tensile fracture of the tows. The combination of acoustic emission and X-ray micro-computed tomography analysis provides an insight for further elucidation of the progressive damage initiation/evolution and failure mechanism of composites.


2021 ◽  
pp. 002199832098559
Author(s):  
Yun-Tao Zhu ◽  
Jun-Jiang Xiong ◽  
Chu-Yang Luo ◽  
Yi-Sen Du

This paper outlines progressive damage characteristics of screwed single-lap CFRPI-metal joints subjected to tensile loading at RT (room temperature) and 350°C. Quasi-static tensile tests were performed on screwed single-lap CCF300/AC721-30CrMnSiA joint at RT and 350°C, and the load versus displacement curve, strength and stiffness of joint were gauged and discussed. With due consideration of thermal-mechanical interaction and complex failure mechanism, a modified progressive damage model (PDM) based on the mixed failure criterion was devised to simulate progressive damage characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint, and simulations correlate well with experiments. By using the PDM, the effects of geometry dimensions on mechanical characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint were analyzed and discussed.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xiangzhong Guo ◽  
Wei Liu ◽  
Xiqing Li ◽  
Haowen Shi ◽  
Zhikun Song

AbstractPenetration and non-penetration lap laser welding is the joining method for assembling side facade panels of railway passenger cars, while their fatigue performances and the difference between them are not completely understood. In this study, the fatigue resistance and failure behavior of penetration 1.5+0.8-P and non-penetration 0.8+1.5-N laser welded lap joints prepared with 0.8 mm and 1.5 mm cold-rolled 301L plates were investigated. The weld beads showed a solidification microstructure of primary ferrite with good thermal cracking resistance, and their hardness was lower than that of the plates. The 1.5+0.8-P joint exhibited better fatigue resistance to low stress amplitudes, whereas the 0.8+1.5-N joint showed greater resistance to high stress amplitudes. The failure modes of 0.8+1.5-N and 1.5+0.8-P joints were 1.5 mm and 0.8 mm lower lap plate fracture, respectively, and the primary cracks were initiated at welding fusion lines on the lap surface. There were long plastic ribs on the penetration plate fracture, but not on the non-penetration plate fracture. The fatigue resistance stresses in the crack initiation area of the penetration and non-penetration plates calculated based on the mean fatigue limits are 408 MPa and 326 MPa, respectively, which can be used as reference stress for the fatigue design of the laser welded structures. The main reason for the difference in fatigue performance between the two laser welded joints was that the asymmetrical heating in the non-penetration plate thickness resulted in higher residual stress near the welding fusion line.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 442-458
Author(s):  
Sandip Chhetri ◽  
Rachel A. Chicchi

Experimental testing of deformed rebar anchors (DRAs) has not been performed extensively, so there is limited test data to understand their failure behavior. This study aims to expand upon these limited tests and understand the behavior of these anchors, when loaded in tension. Analytical benchmark models were created using available test data and a parametric study of deformed rebar anchors was performed. Anchor diameter, spacing, embedment, and number of anchors were varied for a total of 49 concrete breakout simulations. The different failure modes of anchors were predicted analytically, which showed that concrete breakout failure is prominent in the DRA groups. The predicted concrete breakout values were consistent with mean and 5% fractile concrete capacities determined from the ACI concrete capacity design (CCD) method. The 5% fractile factor determined empirically from the simulation results was kc = 26. This value corresponds closely with kc = 24 specified in ACI 318-19 and ACI 349-13 for cast-in place anchors. The analysis results show that the ACI CCD formula can be conservatively used to design DRAs loaded in tension by applying a kc factor no greater than 26.


2016 ◽  
Vol 33 (6) ◽  
pp. 830-851 ◽  
Author(s):  
Soumen Kumar Roy ◽  
A K Sarkar ◽  
Biswajit Mahanty

Purpose – The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using fuzzy methodology leading to success of short-range homing guided missile (SRHGM) in which this critical subsystems is exploited. Design/methodology/approach – Technology index (TI) and fuzzy failure mode effect analysis (FMEA) are used to build an integrated framework to facilitate the system technology assessment and failure modes. Failure mode analysis is carried out for the system using data gathered from technical experts involved in design and realization of the EOTTS. In order to circumvent the limitations of the traditional failure mode effects and criticality analysis (FMECA), fuzzy FMCEA is adopted for the prioritization of the risks. FMEA parameters – severity, occurrence and detection are fuzzifed with suitable membership functions. These membership functions are used to define failure modes. Open source linear programming solver is used to solve linear equations. Findings – It is found that EOTTS has the highest TI among the major technologies used in the SRHGM. Fuzzy risk priority numbers (FRPN) for all important failure modes of the EOTTS are calculated and the failure modes are ranked to arrive at important monitoring points during design and development of the weapon system. Originality/value – This paper integrates the use of TI, fuzzy logic and experts’ database with FMEA toward assisting the scientists and engineers while conducting failure mode and effect analysis to prioritize failures toward taking corrective measure during the design and development of EOTTS.


2021 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Roya Akrami ◽  
Shahwaiz Anjum ◽  
Sakineh Fotouhi ◽  
Joel Boaretto ◽  
Felipe Vannucchi de Camargo ◽  
...  

Joints and interfaces are one of the key aspects of the design and production of composite structures. This paper investigates the effect of adhesive–adherend interface morphology on the mechanical behavior of wavy-lap joints with the aim to improve the mechanical performance. Intentional deviation from a flat joint plane was introduced in different bond angles (0°, 60°, 90° and 120°) and the joints were subjected to a quasi-static tensile load. Comparisons were made regarding the mechanical behavior of the conventional flat joint and the wavy joints. The visible failure modes that occurred within each of the joint configurations was also highlighted and explained. Load vs. displacement graphs were produced and compared, as well as the failure modes discussed both visually and qualitatively. It was observed that distinct interface morphologies result in variation in the load–displacement curve and damage types. The wavy-lap joints experience a considerably higher displacement due to the additional bending in the joint area, and the initial damage starts occurring at a higher displacement. However, the load level had its maximum value for the single-lap joints. Our findings provide insight for the development of different interface morphology angle variation to optimize the joints behavior, which is widely observed in some biological systems to improve their performance.


Volume 3 ◽  
2004 ◽  
Author(s):  
L. Han ◽  
K. Young ◽  
R. Hewitt ◽  
A. Chrysanthou ◽  
J. M. O’Sullivan

Self-piercing riveting, as an alternative joining method to spot-welding, has attracted considerable interest from the automotive industry and has been widely used in aluminium intensive vehicles. One of the important factors that need to be considered is the effect of cyclic loading in service, leading to possible fatigue failure. The previous work reported in the public domain on the behaviour of self-piercing rivets has mainly focused on static tests. The work which is reported in this paper is concerned with the fatigue behaviour of single-rivet joints, joining two 2mm 5754 aluminium alloy sheets. The investigation also examined the effect of interfacial conditions on the fatigue behaviour. A number of fatigue failure mechanisms were observed based on rivet fracture, sheet fracture and combinations of these. The investigation has shown that they were dependent on the applied load and the sheet surface condition. Three-parameter Weibull analysis, using Reliasoft Weibull ++5.0 software, was conducted to analyse the experimental results. The analysis enabled the prediction of early-type failure (infant mortality failure) and wear-out failure patterns depending on the condition of the self-piercing riveted joints and the alloy sheet surface.


Author(s):  
Raffaele Ciardiello ◽  
Andrea Tridello ◽  
Luca Goglio ◽  
Giovanni Belingardi

In the last decades, the use of adhesives has rapidly increased in many industrial fields. Adhesive joints are often preferred to traditional fasteners due to the many advantages that they offer. For instance, adhesive joints show a better stress distribution compared to the traditional fasteners and high mechanical properties under different loading conditions. Furthermore, they are usually preferred for joining components made of different materials. A wide variety of adhesives is currently available: thermoset adhesives are generally employed for structural joints but recently there has been a significant increment in the use of thermoplastic adhesives, in particular of the hot-melt adhesives (HMAs). HMAs permit to bond a large number of materials, including metal and plastics (e.g., polypropylene, PP), which can be hardly bonded with traditional adhesives. Furthermore, HMAs are characterized by a short open time and, therefore, permit for a quick and easy assembly process since they can be easily spread on the adherend surfaces by means of a hot-melt gun and they offer the opportunity of an ease disassembling process for repair and recycle. For all these reasons, HMAs are employed in many industrial applications and are currently used also for bonding polypropylene and polyolefin piping systems. In the present paper, the dynamic response of single lap joints (SLJ) obtained by bonding together with a polyolefin HMA two polypropylene substrates was experimentally assessed. Quasi-static tests and dynamic tests were carried out to investigate the strain rate effect: dynamic tests were carried out with a modified instrumented impact pendulum. Relevant changes in the joint performance have been put in evidence. Failure modes were finally analysed and compared. A change in the failure mode is experimentally found: in quasi-static tests SLJ failed due to a cohesive failure of the adhesive, whereas in dynamic tests the SLJ failed due to an interfacial failure, with a low energy absorption.


Sign in / Sign up

Export Citation Format

Share Document